features

4 SCALE-UP OF SPRAY DRIED AMORPHOUS SOLID DISPERSIONS
Technologies capable of addressing solubility issues are needed in light of the many insoluble drugs in development. The authors discuss the use of stabilised amorphous solid dispersions prepared using pharmaceutical spray drying.
by José Luís Santos, Paula Cordeiro, Mário Temtem

9 THE INNOVATIVE MEDICINES INITIATIVE OrBiTo PROJECT – DEVELOPING THE NEXT GENERATION OF PREDICTIVE TOOLS FOR ORAL BIOPHARMACEUTICS
The Innovative Medicines Initiative OrBiTo project is a collaboration between pharma, academia and specialist technology companies to enhance our understanding of absorption of orally-administered drugs from the gastrointestinal tract and apply this knowledge to predict the performance of oral formulations in patients.
by Mark McAllister, Bertil Abrahamsson, Hans Lennernäs

12 FORMULATION TECHNOLOGY ENABLES THE DELIVERY OF HIV MEDICINES
Innovative formulation technologies have been developed to overcome drug delivery challenges of treatments of HIV infection. This article describes problems of solubility, pharmacokinetics and physical material properties along with their resolution in a series of case examples.
by Peter Timmins, Jonathan Brown

18 TAKING STEPS TO IMPLEMENT THE FALSIFIED MEDICINES DIRECTIVE AND COMBAT COUNTERFEITING IN EUROPE – THE EUROPEAN STAKEHOLDER MODEL
Falsified medicines present a public health threat at global level, with counterfeit goods threatening the health of patients in countries around the world. This article discusses measures to fight counterfeiting.
by Richard Bergström

regulars

3 EDITORIAL COMMENT
20 REGULATORY REVIEW
21 NEWS FROM THE EIPG
23 EVENTS
Dear Colleagues
Welcome to the December edition of the European Industrial Pharmacy journal.
Over the past 3 months, a number of actions have been undertaken by members of the Bureau and, in particular, I would like to emphasise the revamping of the website. This has been possible because of the tireless efforts of Dr Claude Farrugia, Vice-President, Communications, whom I would like to thank warmly for his dedication and support in this respect.

Rather than describing the new features and advantages of our website, I would like to invite you to pay it a visit at the following address: http://eipg.eu. The new website has been designed to raise the profile of the EIPG and its communications with its members and with pharmaceutical industry pharmacists in general, irrespective of whether they are employed within the European Union or outside it.

I consider it essential for the work of the EIPG – position papers, publications, presentations, guides, codes, contributions to meetings with other European professional organisations and institutions – to be made rapidly available to all. By way of an example, I would like to invite you to check out our position papers: ‘EIPG Feedback on Revision to Annex 16’ and ‘Joint call for actions on medicines shortages from European pharmacist organisations’.

I also consider it essential that visitors to our website become frequent visitors and would like to advise regular use of the site as a source of news and information for industrial pharmacists.

Lastly, in the context of strengthening the EIPG’s partnerships with key stakeholders, I have the pleasure of announcing that EIPG has been accepted as an observer in the USP Convention, since several opportunities for close collaboration with the USP have been identified.

May I conclude by wishing you a very Merry Christmas and a Happy New Year.

Jean-Pierre Paccioni
EIPG President
SCALE-UP OF SPRAY DRIED AMORPHOUS SOLID DISPERSIONS

by José Luís Santos, Paula Cordeiro, Márcio Temtem

With an increasing number of relatively insoluble drugs in development today, there is a need to develop and use platform technologies capable of addressing solubility issues. Among the different alternatives, the use of stabilised amorphous solid dispersions is becoming increasingly popular, with pharmaceutical spray drying being one of the key technologies used in their preparation. In spray dried dispersions (SDD), the active pharmaceutical ingredient (API) is molecularly dispersed in a polymeric matrix. The polymer is used to stabilise the amorphous, metastable form of the drug and sustain supersaturation of the API in solution/biological fluids, thereby increasing bioavailability.

Spray drying is a well-established unit operation, mostly owing to intense process optimisation in the food industry where profit margins are tighter. In pharmaceutical spray drying, powder properties (e.g. particle size and bulk density) are typically considered critical quality attributes and because of this a good process understanding is fundamental to enabling a seamless transfer between spray drying units/scales with the smallest number of trials and a minimal use of API.

Dobry et al. proposed a scale-up methodology for developing SDD formulations with minimum API. Their approach is based on a scientific understanding of the spray drying process and critical material attributes that need to be considered: amorphous stability, chemical stability to high temperatures, thermodynamic spaces of the different spray dryer units, atomisation assessment and droplet size measurement, drying kinetics in the drying chamber and experimental confirmatory runs. Such work, however, does not include detailed information on the impact of raw materials and process conditions on the SDD critical quality attributes.

In a review paper by Vehring, a theoretical framework was established for determining the mechanisms of particle formation. Despite not considering local interactions with the drying gas flow, such simple approach can provide an understanding of what can be the structure and morphology of the spray dried particles. Nevertheless, due to the characteristics of the API, each formulation is unique, posing great challenges in the accurate prediction of final powder properties. A recent contribution by Paudel et al. reviews the state-of-the-art, from an academic perspective, including several examples of the impact of raw materials and process conditions on the SDD properties. This is, however, limited to laboratory- and pilot-scale equipment, and does not include industry-relevant case studies – the authors are clear in stating that the literature is scarce in that respect.

A recent work from Ullum et al. proposed the use of computational fluid dynamics (CFD) through the investigation of the flow profile of the drying gas in a spray dryer coupled with droplet drying. Additionally, recent advances in the modelling of spray drying by CFD have been discussed, including its use for pharmaceutical applications. The complexity of the spray drying process, where phenomena occur on vastly different time and spatial scales, suggests that the computational power still needs to evolve substantially before the particle formation process can be adequately predicted within a plant-scale CFD simulation.

In this current paper, the authors aim to discuss the different challenges and perspectives of the scale-up of SDDs based on their experience with a large number of projects spanning from the laboratory up to the large pharmaceutical commercial scale. It is the authors’ intention to share industry-relevant information and opinion on what needs to be considered in the scale-up of SDDs, hoping that it can contribute to improve the scientific and technical understanding of the relation of SDD quality attributes with both raw material attributes and process conditions.
Stability of amorphous solid dispersions

One of the most important attributes of an amorphous solid dispersion is its glass transition temperature (Tg), which is intrinsically related to the API molecular mobility and is one of the characteristics that dictates whether an SDD formulation is stable enough not to change significantly over the shelf-life of the product. To reduce the molecular mobility, a typical rule of thumb used during formulation development is to target a single Tg (true solid solution) of at least 50°C higher than room temperature, i.e. a single Tg above 75°C is ideal from a product shelf-life perspective. Phase separation, as shown by multiple Tgs, is typically associated with the presence of clusters (API or polymer-rich phases) in the matrix and, therefore, the material presents a higher potential for recrystallisation. Both polymer/excipients and API contribute to the Tg of the formulation, which can be estimated by simple equations that weight the individual Tgs of the API, polymer and solvent, e.g. the Fox or Gordon–Taylor equations.

Deviations to these predictions are typically attributed to interactions between the different ingredients and should be considered as positive events from a stability perspective. The inherent use of solvents in spray drying processes also contributes to lowering the Tg of the SDD through a plasticisation effect attributed to the solvent and this should be considered during process development and scale-up.

In addition to the supersaturation/bioavailability considerations that are not covered in this paper, laboratory-scale SDD development primarily focuses on achieving high and single glass transition materials, so that the formulation is stable and the process can be developed with a good yield. To prepare the scale-up and account for the operation in closed loop units (i.e. with nitrogen recycle), a few trials are executed with varying drying conditions to generate SDD materials with distinct residual solvent contents. The Tg of those materials is then assessed by modulated Differential Scanning Calorimetry (mDSC) in a closed pan to assess the plasticisation effect of the solvent. A useful illustration of these results is presented in Figure 1, where the drying conditions, expressed as the relative saturation of the solvent in the drying gas (RS_out), and Tg are plotted as a function of the residual solvent content in the SDD. The plasticisation effect is scale-independent and is used to support the selection of the most suitable drying condition. Included in Figure 1 are laboratory and large-scale trials that can be taken as representative of the majority of SDD formulations. Conversely, the relation between relative saturation in the gas stream and powder solvent content is scale-dependent as it is related to residence time and droplet/particle size.

In particular cases, the trends of both spray drying scales are coincident as illustrated in Figure 1, which indicates that the data generated on amorphous stability in the laboratory with a small quantity of API can aid the preparation of the scale-up for commercially ready spray drying units. Figure 2 illustrates one such case, where the material from the larger-scale spray dryer matched perfectly the Tg and X-ray powder diffraction (XRPD) profile of the SDD produced in the laboratory. Furthermore, the data from laboratory-scale trials can generally be regarded as a worst-case scenario since the particles’ residence time in the drying chamber is lower than in larger-scale spray dryers, causing the solvent content of laboratory-generated SDD to be typically higher.

The secondary drying of wet SDD materials is another common operation in the manufacturing of amorphous solid dispersions. To achieve the International Conference on Harmonization limits for the residual solvents, tray dryers, double-cone dryers or static agitated dryers are most widely used. The same set of data shown in Figure 1 can also be used in the optimisation and development of a secondary drying strategy. Figure 3 shows secondary drying data, where the Tg of the powder is increasing with a decrease in residual solvent content. A conservative approach is to always use drying temperatures below the SDD Tg, which can be adjusted incrementally during the operation as illustrated in Figure 3 to decrease the secondary drying cycle time.

SDD downstream processability and performance

The downstream performance of a spray dried material may be

Figure 1: Tg and relative saturation of the solvent in the drying gas (RS_out) as a function of residual solvent content in the SDD (circles: laboratory scale spray dryer; squares: large scale spray dryer).
discussed from two different perspectives: processability and product performance. Typical downstream operations include blending, roller compaction and tableting. The ability for an SDD material to flow and be processed in the downstream equipment with no major operational difficulties is closely related to powder properties, namely particle size, density and cohesive–adhesive balance between the ingredients. Rule-of-thumb strategies for improving flow indicate that both particle size and density should be as large as possible. In a best-case scenario, the powder would also have the necessary compressibility (indicated by the differences in bulk and tap density) to enable a direct compression approach. The concern for product performance is that as SDDs are mostly developed with BCS class II APIs (good permeability, poor solubility), the drug product bioavailability challenge is more related to improving solubility. Solubility enhancement may be achieved by increasing the maximum API concentration in solution (BCS class IIb) – here the polymer used in an SDD may play an important role as it may promote supersaturation and/or by improving the API dissolution kinetics (BCS class IIa). Where dissolution kinetics are key to achieving bioavailability, the SDD properties, namely particle size, can play an important role in the dissolution profile of the drug product, in the same way as tablet disintegration due to the erosion of the small SDD granules. Particle size dictates the specific area available for mass transfer of the API in the dissolution medium (the smaller the particle size, the larger the specific area).

Bioavailability can also be limited by the supersaturation potential of the amorphous solid dispersion rather than the dissolution kinetics, and in those cases particle size of the SDD is not as critical. Hence, a tight control over particle size should be on the list of priorities of every spray drying scientist when developing an SDD.

In the scale-up process from the laboratory to a commercial-scale spray dryer, distinct points should be considered. In the laboratory scale, the bottleneck is usually related to the powder properties that can be attained. Due to the reduced size of the drying chamber, laboratory-scale units typically use external mixing two-fluid nozzles. Such atomisation tends to produce particles with a Dv50 (mean particle size in volume) below 10µm and a bulk density below 0.15g/mL, which are not adequate for downstream processing, primarily due to very
poor flow properties. Although a certain degree of flexibility exists in the blending step, and despite a judicious selection of the excipients and their relative amounts, it is very unlikely, particularly for large-dose drug products, that a good formulation candidate can be developed without an additional granulation step. In larger-scale spray dryers, an enhanced flexibility exists to improve the SDD properties since the range of atomisation mechanisms is broad, allowing the production of a large spectrum of droplet sizes and consequently products with particle size distributions more suited for downstream processing. During pre-clinical and formulation screening, with processes being developed on a smaller scale and clinical trials batches being produced with limited powder properties (e.g. small particle size and low bulk density), the advancing of the drug candidates to late-phase stages can pose significant challenges for the spray drying process development. One of these situations may be when an SDD process is locked with a small particle size.

An ideal approach would be to have the exact same powder properties across scales, targeting those to be used in late-phase and commercial stages. One such approach involves the use of a laboratory unit with an ultrasonic nozzle atomisation and optimised drying gas flow rate and drying chamber configuration. The use of ultrasonic atomisation enables the generation of droplets of similar dimensions to those in larger-scale spray dryers, which coupled with the correct thermal and residence time conditions can meet the objective of matching the larger-scale powder properties in the laboratory. Figure 4 illustrates the morphology of spray dried materials produced in the laboratory and in a larger-scale spray dryer, where particle size and density could be maintained across scales.

Droplet size

Experience shows that the most determinant parameter to adjust SDD particle size in spray drying is droplet size. Droplets can be generated through different atomisation mechanisms. The most widely used atomisation mechanisms in pharmaceutical spray drying applications are pressure nozzles and two-fluid nozzles. For the production of SDDs, pressure nozzles are typically preferred due to their flexibility in adjusting droplet size (although two-fluid nozzles can be more efficient in this respect), and for enabling the production of powders with relatively larger bulk densities than with two-fluid nozzles.

Droplet size can be estimated through the use of correlations available in the literature. These correlations are typically developed for water spraying, and conversion for specific solvents can be accomplished by considering their surface tension and viscosity. While such equations from the literature can be applied successfully for specific geometries (e.g. as for external mixture two-fluid nozzles which have a simpler geometry), their application for vendor-specific pressure nozzle geometries may be less adequate given the particularities of the different nozzles. For such cases, the development of droplet size empirical correlations is one of the most straightforward approaches, provided that droplet size measurements are available.

Figure 5 shows droplet size predictions for three different pressure nozzles for atomisation flow rate, using a correlation developed for one such vendor-specific nozzle geometries. This predicts the impact of changing the nozzle on droplet size for a fixed feed flow rate. One of the state-of-the-art methods for droplet size data generation is the use of Phase Doppler analysers. These, however, have limitations for

Figure 4: Scanning electron microscopy images comparing powders produced in a commercial scale pharmaceutical spray dryer and an optimised laboratory scale unit with an ultrasonic nozzle.

Figure 5: Droplet size estimation for three different pressure nozzles as a function of feed flow rate.

SCALE-UP OF SPRAY DRIED AMORPHOUS SOLID DISPERSIONS

(continued)
commercial-scale spray dryers due to the very high density of the spray plume (given the very high feed flow rates) which makes the penetration of the laser and adequate measurements of droplet size difficult. In these cases, extrapolation of available correlations may be the only option to make an estimation of droplet size.

Macroscopic heat and mass balance

In a macroscopic evaluation of a spray drying process, typically a combined heat and mass balance needs to be considered. In a spray drying process, a solution is fed to the top of a drying chamber where it is atomised into small droplets, being heated and vaporised upon contact with hot drying nitrogen. Solid particles are formed very rapidly, typically within seconds, and then separated from the gas in a cyclone and filter bag; the solvent within is later removed in a condenser, closing the mass balance in terms of solvents and solids. For heat balance closure, the only unknown is the heat transfer coefficient of the drying chamber walls that dictates the amount of heat lost to the surrounding room. As the walls are thermally insulated, the global heat transfer coefficient for the walls is a combination of that of stainless steel and of the insulation material. As such, the global wall heat transfer coefficient for a spray dryer is not easily estimated and needs to be established using actual experimental data in a macroscopic heat and mass balance model. The use of such macroscopic models enables an accurate estimation of the drying conditions that are to be expected (e.g. in terms of relative saturation of the solvent in the drying gas), which, coupled with the data generated in the laboratory in Figure 1, can provide an estimate of the SDD Tg in larger-scale spray dryers as illustrated in Figure 6.

Final remarks

The future strategies for the scaling-up of SDDs should include the use of advanced computational methods such as CFD that can better anticipate spray-related challenges, e.g. the sticking of materials with low Tg to the walls of the spray dryer. As for the impact of SDD powder properties downstream, key attributes that can affect powder flow (and consequently its processing by blending, roller compaction and tableting) and the SDD dissolution performance need to be better understood so that the spray drying process can be optimised to produce material that meets all downstream requirements. The use of advanced analytical equipment, such as powder rheometers and compaction simulation apparatuses, should assist in meeting such objectives through the establishment of quantitative relationships between SDD properties (even with small quantities of powder) and downstream performance. Clearly, the possibility of producing SDD in the laboratory with comparable properties to that of larger-scale spray dryers can help to simplify and streamline the process development workflow (from the spray dried powder to the final tablet dissolution performance). The use of special atomisation mechanisms in laboratory-scale spray dryers (such as ultrasonic nozzles) needs to be further investigated to enable an improved match of particle size and density across scales, thereby reducing the time for an SDD formulation to reach the market.

References

The Innovative Medicines Initiative (IMI) OrBiTo project is a pre-competitive collaboration between pharma, academia and specialist technology companies which aims to enhance our understanding of how orally-administered drugs are absorbed from the gastrointestinal (GI) tract and apply this knowledge to develop new in vitro tests and in silico models that will better predict the performance of oral formulations in patients.

Introduction

The IMI is a new model for public–private collaboration which aims to support open innovation in pre-competitive research and accelerate the development of safer and more effective medicines for patients. With a €2 billion budget, IMI is the world’s largest public–private partnership in health research and development. IMI is a joint undertaking between the European Union (EU) and the European Federation of Pharmaceutical Industries and Associations (EFPIA), who each contribute €1 billion to IMI in cash (EU) and by in-kind contribution (EFPIA, Figure 1). From the first three IMI calls for projects (spanning 2008–2010), 23 projects were approved for funding involving 221 R&D teams from EFPIA companies, 298 academic institutions, 47 small- and medium-sized enterprises (SMEs), 11 patient organisations and 7 regulatory agencies.

The OrBiTo project was submitted as part of the IMI 4th call for projects in 2011 and, following approval of funding, started in October 2012 and will run for a 5-year period with an overall budget of just over €24 million.

The OrBiTo project and consortium

Our understanding of the GI environment and prediction of formulation performance has advanced significantly over the last 15–20 years with the implementation of tools such as in vitro permeability models, biorelevant dissolution media, the biopharmaceutical classification scheme and in silico physiology-based pharmacokinetic (PBPK) models for the prediction of GI drug absorption. However, significant gaps in our understanding of oral biopharmaceutics still limit our ability to select drug molecules and/or formulation approaches which are truly optimised for the oral delivery route. The impact on preclinical and clinical drug development is often manifested in delays at key decision points due to the need to repeat in vivo trials to confirm formulation or drug product performance. The OrBiTo vision is to transform our ability to predict the in vivo performance of oral drug products across all stages of drug development. This will happen through partnership, collaboration and data sharing, developing our fundamental knowledge of the GI conditions to deliver innovative biopharmaceutics tools which will accurately predict product performance over a range of
clinically relevant conditions. The integration of in vitro and in silico approaches will provide a biopharmaceutics toolkit, validated using clinical data, to accelerate drug development. The main objectives of the OrBiTo project are as follows.

- To increase the understanding of the GI drug absorption process as a prerequisite for improved biopharmaceutical predictions.
- To create new or refined in vitro and in silico methods contributing to improved in vivo predictions.
- To develop a framework for the optimal use of predictive tools and preclinical models. OrBiTo is structured in four research work packages (WPs) focusing on physico-chemical tools (WP1), in vitro tools (WP2) and in vivo understanding and tools (WP3), with the integration of results and data across all WPs being achieved through the application of in silico models of drug absorption in WP4 (Figure 2).

WP1 seeks to improve the understanding of the physico-chemical and biopharmaceutical properties, which affect the in vivo performance of poorly soluble active pharmaceutical ingredients (APIs; BCS class II and IV drugs). The data generated by the new models and characterisation tests developed through WP1 will inform the selection of candidate molecules during preclinical testing and guide appropriate formulation selection for first use in human studies. Characterisation data describing biopharmaceutical properties will also be used as a key input for the integrated in silico models being developed as part of WP4. WP2 will focus on in vitro development tools in the dissolution and permeability area that provide high quality quantitative predictions for late stage/formulation development. WP3 will focus on generating in vivo understanding in areas where remaining gaps hamper the development of predictive methods. This will include regional permeability studies, enhanced system characterisation of the GI physiological conditions as well as studies of model drugs to elucidate specific biopharmaceutical processes, providing a basis for improved in vitro and in silico tools. In addition to integrating the results from WP 1–3 within PBPK models of the GI absorption process, WP 4 will also seek to build on and improve existing prediction algorithms to improve the accuracy of simulation and prediction.

Table 1: OrBiTo project consortium

<table>
<thead>
<tr>
<th>EFPIA member companies</th>
<th>Universities, research organisations, public bodies, non-profit groups</th>
<th>SMEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AstraZeneca AB, Sweden</td>
<td>Uppsala Universitet, Uppsala, Sweden</td>
<td>Simcyp Limited, Sheffield, UK</td>
</tr>
<tr>
<td>Abbvie GmbH & CoKG, Germany</td>
<td>Copenhagen University, Denmark</td>
<td>Sirius Analytical Ltd, Forest Row, UK</td>
</tr>
<tr>
<td>Bayer Pharma AG, Germany</td>
<td>Ernst Moritz Arndt University Greifswald, Germany</td>
<td>Simulations Plus, Inc., Lancaster, USA</td>
</tr>
<tr>
<td>Boehringer Ingelheim International GmbH, Germany</td>
<td>Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany</td>
<td></td>
</tr>
<tr>
<td>GlaxoSmithKline Research and Development Ltd, UK</td>
<td>Johannes Gutenberg Universität Mainz, Germany</td>
<td></td>
</tr>
<tr>
<td>H. Lundbeck A/S, Denmark</td>
<td>Katholieke Universiteit Leuven, Belgium</td>
<td></td>
</tr>
<tr>
<td>Janssen Pharmaceutica NV, Belgium</td>
<td>Medical Products Agency, Uppsala, Sweden</td>
<td></td>
</tr>
<tr>
<td>Merck Sharp & Dohme Corporation</td>
<td>National and Kapodistrian University of Athens, Greece</td>
<td></td>
</tr>
<tr>
<td>Novartis Pharma AG, Switzerland</td>
<td>Netherlands Organization for Applied Scientific Research TNO</td>
<td></td>
</tr>
<tr>
<td>Orion Corporation, Finland</td>
<td>University of Manchester, UK</td>
<td></td>
</tr>
<tr>
<td>Pfizer Ltd, UK</td>
<td>University of Strathclyde, UK</td>
<td></td>
</tr>
<tr>
<td>Sanofi-Aventis Research and Development, France</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Overview of the OrBiTo work packages.
prediction of in vivo performance. Much of the work described in WP 1–4 will be underpinned by the development of a novel and unique database containing in vivo data of well-characterised novel APIs and diverse oral pharmaceutical products. It will mainly consist of novel material from the EFPIA partners and the first version of this database is expected to include data from more than 100 clinical studies. EFPIA partners will also supply APIs or formulated drug product for additional experimental characterisation. An important aspect of the research concept is to use this material and database resource across the different WPs in the project to generate common data which can be integrated throughout the programme to identify a generally applicable framework for use of predictive tools. The database will be supplemented by literature data and it will also be open for additions with novel EFPIA compounds during the project. However, it is emphasised that the vast majority of work will be done on novel APIs with the exception of the prospective human clinical studies to be performed within OrBiTo which will use well-characterised marketed APIs as model drugs.

The OrBiTo Project consortium comprises 12 EFPIA companies and an academic-SME group with 14 members as shown in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Company</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>Example Country 1</td>
</tr>
<tr>
<td>Example 2</td>
<td>Example Country 2</td>
</tr>
</tbody>
</table>

Conclusions

Over the 5-year duration of the project, it is hoped that the combination of industrial biopharmaceuticals expertise, specialist technology providers and academic centres of excellence will create the next generation of tools for oral biopharmaceutics and transform our ability to predict oral formulation performance. The IMI principles and framework for pre-competitive collaboration are central to OrBiTo’s research strategy. This is clearly illustrated by the development of a cross-company physicochemical and pharmacokinetic database containing extensive and diverse data-sets which will be used to develop and validate new in vitro and in silico tools. In conclusion, the OrBiTo project provides a tremendous opportunity to advance our understanding of oral biopharmaceutics and offers a template for collaborative efforts in other areas of pharmaceutical science.

References

Acknowledgements

This information is provided on behalf of the IMI OrBiTo consortium.
FORMULATION TECHNOLOGY ENABLES THE DELIVERY OF HIV MEDICINES

by Peter Timmins, Jonathan Brown

The most recent entrants into clinical practice for the treatment of human immunodeficiency virus (HIV) infection include a number of compounds with drug delivery challenges. Innovative formulation technologies have been developed and applied to overcome these challenges and provide medicines suitable for the clinical need. Problems of solubility, pharmacokinetics and physical material properties are described along with their resolution in a series of case examples that are illustrative not only of HIV medicines but are applicable solutions to similar problems in other therapeutic classes.

Introduction

Significant advances in the treatment of HIV infection have occurred since its identification around three decades ago, leading to a reduction in its incidence and longer life expectancy of infected individuals. Although a cure still remains an aspiration, anti-retroviral drugs have been an important factor in managing the infection, and the need for new therapies and improved versions of existing drugs remains important to assure effective viral suppression, to enable patient compliance with medication regimens and to deal with the development of drug resistance.

The efforts of drug discovery scientists have generated a number of new anti-HIV agents but, as is the case for many emerging drug candidates across all therapeutic areas, the physicochemical and pharmacokinetic properties of a number of the new entities have challenged formulation scientists to assure that the finished medicine delivers the desired clinical profile to realise therapeutic success. This challenge may be further emphasised if doses in the hundreds of milligrams are required, as is the case for a number of HIV therapies. With the emergence of the highly active antiretroviral therapy (HAART) approach in the late 1990s, as newer agents that targeted different stages of viral replication life cycle appeared and made this possible, combination drug therapy advanced and eventually provided for simplified treatment regimens with co-formulated drugs.

Assuring the performance of the newer drugs with their inherent challenges, as well as supporting simplified dosing of multiple medicines therefore defines an important role for pharmaceutical formulation. This review focuses on how formulation science has effectively enabled the utility of some newer, as well as some more established, treatments for HIV infection and illustrates examples that inform how to deal with formulation challenges of today’s medicines irrespective of therapeutic class.

Formulation of HIV medicines - case histories

Efavirenz

Efavirenz (Sustiva, Bristol-Myers Squibb, and a component of Atripla, Bristol-Myers Squibb/Gilead) is a poorly soluble, non-nucleoside reverse transcriptase inhibitor (NNRTI) reported as showing sensitivity of bioavailability to tablet disintegration time. Therefore, the original single entity formulations employed optimised disintegrant choices and levels, along with a careful distribution of disintegrant between intragranular and extragranular phases of the tablet, to assure very rapid disintegration. Tablets formulated in this way were bioequivalent to earlier marketed capsule formulations (200mg efavirenz per capsule) and as they contained a higher dose of drug per unit dose form (600mg) in an acceptably sized tablet, offer greater convenience to patients where a dose of 600mg is prescribed.

Other work suggested that the visually observed tablet disintegration alone is not the key factor that determines bioavailability for efavirenz, but what is most important is the completion of disintegration down to primary particles and dispersion of the active ingredient. For two tablet formulations, in vitro disintegration and the time to complete disintegration in vivo as measured by gamma scintigraphy were different, but the one that exhibited slower disintegration both
in vitro and in vivo had slower in vitro dissolution but had the highest bioavailability, with higher area under the plasma concentration–time curve, higher maximum plasma concentration and an earlier time to maximum plasma concentration. It was suggested that the reason for the delay in absorption for the apparently faster disintegrating formulation was that it was disintegrating to larger aggregates in vivo relative to the better performing formulation but this difference is not discernible in visual observation of disintegration. From these larger particles, resulting perhaps from poorer effectiveness in this specific formulation of the included sodium starch glycolate disintegrant, drug release was slower. Also it was suggested that in vivo gelation of the sodium starch glycolate acted as a further barrier for drug release.7

Translating this learning to a fixed combination dosage form, containing efavirenz with emtricitabine and tenofovir disoproxil fumarate, led to the choice of a bilayer tablet to mitigate compatibility problems and to assure the efavirenz layer could disintegrate readily and disperse the poorly wetting efavirenz particles in vivo to assure bioavailability8,9. A non-bilayer formulation based on wet granulation led to instability, attributed to high water levels needed for efavirenz granulation that allowed a eutectic formation between emtricitabine and tenofovir disoproxil fumarate which dried as a glassy or amorphous unstable form10. Additionally, interaction with the surfactant included to help wet and disperse the efavirenz was implicated, but its removal led to impaired bioavailability8. A bilayer tablet that separated the efavirenz component showed good stability and bioequivalence of its components to the single entity formulations9. It combines three medicines useful together to treat HIV infection, as they come from more than one therapeutic target class, that have pharmacokinetics suited to once daily dosing and all have the same lack of restriction regarding dosing with food. As such, formulation science has provided for a fixed combination, one tablet, once daily dosing treatment for HIV infection, offering an opportunity to improve patient adherence to therapy which is critical to maintaining disease control11.

Etravirine
Etravirine (Intelence, Janssen-Cilag), a second generation NNRTI, is a very insoluble weak base. Conventional and nanosized drug formulation approaches resulted in negligible blood levels on oral dosing. It was necessary to dose amorphous drug, where the barrier of crystal lattice breakdown as a first step in dissolution was absent, in order to achieve an acceptable degree of absorption12. However, preparing amorphous drug required cryomilling of crystalline drug for 3 hours at −196°C and the amorphous drug had poor physical stability, being prone to partial recrystallisation13. Due to its low solubility and its low to moderate permeability (Biopharmaceutics Classification System Class IV compound)12, effective drug delivery requires consideration of not only optimising the etravirine physical form, but also to assure very rapid disintegration and in vivo drug release from the dosage form. This is to minimise any impact of variability in gastrointestinal transit time on presentation of the poorly permeable drug to the sites where drug has highest absorption potential (the very high surface area proximal small intestine).

An initial formulation for clinical trials that attempted to resolve these drug delivery problems, referred to as a granulo-layered formulation14, required a dose of drug of 800mg twice daily to achieve desired pharmacokinetics. Layering amorphous drug as a dispersion in hydroxypropylmethylcellulose (HPMC) from organic solvent solution onto excipient beads15 was used to improve etravirine dissolution rate, a technology

![Figure 1: Process train for manufacture of etravirine tablets based on spray-dried amorphous dispersion from description in innovator patent application18.](image-url)
approach previously applied to commercial formulations of the antifungal itraconazole. This formulation strategy is one of the oral drug delivery approaches described for etravirine in a drug synthesis patent. Spray drying drug from organic solution together with a polymer was subsequently pursued as an approach to further improve drug dissolution and hence bioavailability, but initial dispersions of drug in HPMC yielded particles on spray drying that were of low bulk density and gave problems with tableting. Co-spray drying etravirine, HPMC and microcrystalline cellulose, with drug and polymer in solution and with microcrystalline cellulose suspended in the spray drying feed, led to denser particles highly suited to processing into tablets (Figure 1). This formulation technology provided for significantly improved bioavailability of etravirine in HIV-infected subjects, as indicated by area under the plasma concentration–time curve over the period to 12 hours post-dosing, and allowed for smaller and a reduced number of tablets to achieve the clinically effective dose. The range of exposure seen with 200mg of the spray dried formulation given twice daily was comparable to that yielded by 800mg of the granulo-layered formulation dosed twice daily and with reduced interpatient variability.

Novel HIV attachment inhibitors

Novel HIV attachment inhibitors interfering with the binding of the viral gp120 glycoprotein to the host cell CD4 have been identified by Bristol-Myers Squibb. One such compound, BMS-626529, is a potent inhibitor of viral replication in vitro but exhibits low oral bioavailability and a very short apparent half-life in vivo. To overcome the low bioavailability of the compound associated with its poor water solubility, a prodrug strategy was pursued in which the chemical structure was modified by the addition of hydrophilic cleavable substituent groups to improve solubility. Enzymatic hydrolysis in vivo enabled effective delivery of the parent molecule. Based upon animal and human in vivo screening experiments, BMS-663068, a phosphonoxymethyl prodrug of BMS-626529, was selected for evaluation in the clinic.

The highly soluble prodrug, when delivered orally, is converted locally via intestinal brush border alkaline phosphatase to the poorly soluble parent, BMS-626529, immediately prior to/during absorption. Maintaining a threshold minimum plasma concentration (Cmin) prior to administration of the next dose is considered important to efficacy, whilst the minimisation of maximum plasma concentration (Cmax) may mitigate peak-related adverse events. Sustained absorption of parent throughout the gastrointestinal tract via slow release of prodrug from a formulation is required to achieve this and overcome the short half-life of the compound. The achievement of target

Figure 2: HME process to make amorphous dispersion formulations (e.g. lopinavir with ritonavir). The HME approach involves dispersing the drug within a pharmaceutically-acceptable polymer in an extruder with the application of heat. If it is done by raising the drug and the polymer in admixture to above the melting point of the drug and the glass transition temperature of the polymer and then cooling without allowing the drug to recrystallise, then the resultant solid dispersion is amorphous. The physical stability of such a formulation might be dependent on the miscibility of the drug and polymer, i.e. the amount of drug dispersed in the polymer, temperature and humidity at which the solid dispersion is stored, and whether there are molecular level interactions between drug and polymer that impair its propensity to recrystallise. Commercial equipment is usually a twin screw extruder which enables feeding of drug and polymer (and other excipients if needed) into the extruder where specifically-designed motor driven screws convey the materials along the heated barrel, mix them, allow them to melt and soften as appropriate, knead and densify them, shear and cut the formed mass and allow it to cool as it leaves the extruder barrel. The resultant material can be further processed into granules and, if needed, blended with other excipients to make it suitable for tableting.
pharmacokinetics was enabled through the design of a novel extended-release (ER) tablet. Tablet development was based on in silico modelling and built upon careful evaluation of bioavailability in specific areas of the intestine and colon to gain an understanding of how gastrointestinal physiology and luminal fluid volume and composition could influence prodrug conversion and absorption of the parent. The formulation was developed as a non-disintegrating monolithic, matrix tablet utilising hydrophilic swellable cellulose ether polymer technology. Although unbound alkaline phosphatase was shown to penetrate the hydrated gel layer of the tablet and represent an in vivo risk from luminal alkaline phosphatase, conversion of prodrug to parent within the hydrated dosage form was shown to be inhibited. This is essential to maintaining the required release rate and pharmacokinetics as premature conversion to parent within the dosage form would lead to reduced bioavailability. The optimised, in vivo stabilised ER formulation was found to be suitable for once to twice daily dosing.

Lopinavir with ritonavir

Lopinavir with ritonavir (Kaletra, AbbVie) commercial formulation employs hot melt extrusion (HME), resulting in an amorphous drug dispersion in the finished product. Amorphous dispersions have been progressed as a solution to overcome poor drug-like properties, solubility and dissolution rate, and mitigate poor bioavailability relating to those properties. HME represents a commercialisable approach to manufacturing such dispersions (Figure 2). It has long been used in other industries where a thermoplastic material is softened under temperature and shear force, usually admixed with other materials (fillers, pigments, stabilisers, etc), then extruded to form granules/pellets, tubes, rods or sheets. HME was first described for creating pharmaceutical dosage forms over 40 years ago but only became of demonstrated potential for creation of commercialisable products in the last 15–20 years. The commercial lopinavir 200mg with ritonavir 50mg combination tablet employs copovidone and sorbitan laurate as the polymeric components to provide the material for tableting. The amount of copovidone in the product was higher than previously used according to the US FDA Inactive Ingredient Listing and required the submission of a package of toxicity studies to support the higher level, including data on repeat dose toxicity, genotoxicity and carcinogenicity.

As well as reducing the number of dosage forms the patient has to take in transferring to the HME formulation from the prior available liquid-filled capsule formulation, the HME formulation avoids the requirement to store the medicine in a refrigerator. The tablet shows lower variability in pharmacokinetic parameters relative to the capsule and has a much diminished food effect, allowing for the possibility of not restricting to dosing with food. These are valuable improvements in terms of supporting patient compliance with this medicine resulting from the application of modern formulation science.

Cobicistat

Cobicistat (Tybost, and component of Strizbild, Gilead) is a novel cytochrome P450 (CYP) enzyme (CYP3A4) inhibitor used as a "booster" in combination with some HIV treatments, e.g. protease inhibitors, to reduce their metabolism during absorption and so increase the amount of unchanged drug reaching the systemic circulation. Ritonavir is also used as such a boosting agent but cobicistat differs in that it has no anti-viral activity of its own and is purely used to modify pharmacokinetics.

Cobicistat drug substance does not occur in crystalline form and is isolated as an amorphous, hygroscopic solid foam of low glass transition temperature which readily transforms under ambient conditions via a moisture- and temperature-driven phase transformation into a rubber-like material that is difficult to process into dosage forms. The removal of the absorbed moisture and reversion to the original solid form does not occur.

Initial approaches to making solid dosage forms involved handling the drug substance in solution in an appropriate organic solvent, such as ethanol. This solution is added to silica and then excipients and water in a high shear mixer to wet granulate. Fluid bed drying achieves removal of the organic solvent as well as the water. The challenges of handling large volumes of flammable solvent in a drug product processing facility, whilst not insurmountable, can be avoided if the drug is loaded on to a suitable carrier material that impart superior handling properties to the drug substance prior to introduction into a dosage form manufacturing area.

By adsorbing onto silica by evaporation from a dichloromethane solution of drug as part of the isolation of the cobicistat, a free-flowing powder is produced. Although still hygroscopic, moisture uptake is now reversible and the cobicistat no longer undergoes phase transformation. The drug adsorbate is highly suited to further processing into pharmaceutical dosage forms. The finished dosage form using the adsorbate showed bioequivalence for cobicistat with dosage forms prepared by the ethanol/water high shear granulation process. For cobicistat, formulation technology has dealt with challenging physical properties of an active pharmaceutical ingredient and provided an approach to improved handling and manufacturing of dosage forms.

Nevirapine

Nevirapine, a well-established NNRTI, has recently become available as an ER formulation.
FORMULATION TECHNOLOGY ENABLES THE DELIVERY OF HIV MEDICINES

(Viramune Prolonged-Release, Boehringer Ingleheim). Although it is inherently a long half-life drug, t½ >45 hours34, there are advantages in offering patients an ER nevirapine formulation. Despite the long half-life, immediate-release nevirapine is typically dosed in treatment-stabilised patients at 200mg twice daily35. A concern with using a 400mg once daily immediate-release dose is that it results in high mean peak and low mean trough plasma concentrations of drug relative to using a dose of 200mg twice daily, although the exposure to drug as measured by the area under the plasma concentration–time curve was equivalent for once and twice daily dosing regimens. Higher peak concentrations give concern as to an increased risk of liver toxicity and lower trough concentrations raise concern as to risk of emergence of viral resistance35. Also, twice daily dosing is less convenient for HIV patients taking multiple medications where many of their other medicines have one daily dosing. Hence, there is good clinical relevance to creating the ER formulation.

Predicting or demonstrating that there is effective drug absorption from the colon is essential to determining the viability of developing an oral ER formulation36. Nevirapine delivered to the ascending and descending colon had 82 and 58% bioavailability, respectively, relative to an orally-administered suspension of nevirapine37, exceeding the value of ≥40% suggested as an indicator of likely success38, and supported the development of the ER product.

The commercial formulation was selected on the basis of pharmacokinetic evaluation of a series of hydrophilic matrix tablets that employed different amounts and grades of HPMC as a release rate controlling polymer. Tablets contained 20, 25, 30 or 40% w/w of HPMC 2208 4000 cps grade or alternatively 20 or 25% w/w HPMC 2910 4000 cps grade and the amount and grade of polymer used yielded a range of in vitro release rates that translated to a range of in vivo pharmacokinetic profiles39 with the lower amount of polymer leading to a faster release rate, and with the 2910 polymer leading to faster release rates than the 2208 polymer. The marked change in release rate with polymer amount, given similar tablet sizes across the range studied, suggests a degree of dependency on erosion as a key rate controlling mechanism from the hydrated polymer matrix in vitro and in vivo. It was possible to build a correlation between the in vitro release profile and the in vivo performance enabling prediction of the pharmacokinetic behaviour of dosage forms as in vitro release rate was changed, which would enable further formulation development studies to be prosecuted using in vitro drug release rate for decision making40. Contrary to what was seen in the single-dose human study used to establish the in vitro–in vivo correlation, in a steady state human bioavailability study of the 20 and 25% w/w polymer ER formulations, the (more slowly releasing) 25% w/w polymer formulation showed higher bioavailability compared to the 20% w/w polymer formulation41. As metabolism of nevirapine is impacted by induction of CYP enzymes, which include CYP3A442 (which is more extensively expressed in the upper gastrointestinal tract), a more slowly releasing formulation might deliver more drug to the regions where the enzyme is not expressed compared to the faster releasing formulation, and result in increased exposure that is more obvious in a steady state study. This observation offers the caution that the performance of an enabled formulation has to be considered in light not only of its fabrication technology, but the physiological environment in which it has to operate, including gastrointestinal transit, absorption sites, metabolising enzymes, etc.

Summary

The development of modern medicines for the treatment of HIV infection has benefited from formulation technology to accommodate the inherent properties of the active pharmaceutical ingredient and assure that pharmacokinetic and physiochemical challenges are managed. HIV medicine formulations offer examples of ER technologies, managing in vivo disintegration and dispersion, adsorption onto a carrier, spray drying and HME. All of these technologies are in place for commercialised products and
FORMULATION TECHNOLOGY ENABLES THE DELIVERY OF HIV MEDICINES

Continued...

demonstrate how formulation technology in general may be deployed to deal with the challenges inherent in contemporary potential therapeutic agents of any disease class.

References

15. Anonymous. Intellence 100 mg tablets (Tibotec) 01/18/2008 approval [HIV-1: clinical pharmacology and biopharmaceutics. Sourced from FOI Services, Inc., Gaithersburg, MD, USA; 2008. Downloaded from foiservices.com on April 20, 2010.
Falsified medicines present a public health threat at global level, with counterfeit goods endangering the health of patients in countries around the world. With the increased prevalence of unlicensed online “pharmacies” and points-of-sale, the problem is attracting growing attention – inspiring governments, security officials and the pharmaceutical industry to take action. The pharmaceutical industry has a vested interest in fighting counterfeiting: developing new medicines is only one part of providing healthcare treatments for patients – we also have to ensure that people benefit from those medicines. Part of that involves making sure that any medicine we produce reaches the patient in the same condition as when it leaves the manufacturing site.

Richard Bergström was appointed as Director General of the EFPIA in April 2011. Over the past 20 years he has worked for Roche, Novartis and with the Swedish pharmaceutical industry association (LIF). Since 2006, he has been an Advisor to the WHO on good governance in medicine.

Falsified Medicines Directive: fighting a growing problem

Counterfeiting is a crime with very real consequences: it presents a major threat to patient safety and we have seen the devastating evidence of this. Just this past October, customs agents seized 1 million fake Xanax pills at Zurich airport. In May of this year, French customs officers seized 1.2 million doses of counterfeit aspirin – an over-the-counter medicine that could have reached patients even more easily than the fake anti-anxiety pills seized in Switzerland. Germany, meanwhile, experienced one of its most significant counterfeiting scares in March, when it was discovered that a common heartburn counterfeit or sub-standard medication had made it onto the market. In 2011 alone, approximately 30 million fake medicines were seized at EU borders. What makes these statistics even more troubling is the fact that it is impossible to know what the real numbers are – but we can be sure they are much higher than what is reported. The people behind counterfeiting are criminals – they aren’t reporting earnings and sales, they aren’t releasing quarterly reports. It is impossible to gauge just how big the problem is. And that is cause for serious concern. All we can know is that we need to act – and quickly.

In an attempt to fight back against counterfeiters and the dangerous goods they bring into the markets, the European Union (EU) put forth the Falsified Medicines Directive (FMD; 2011/62/EU) first published in the EU Official Journal on 1 July 2011. The FMD sets out steps to secure the supply chain of medicines in Europe. It asserts that all prescription-only medicines will have to bear safety features (i.e. a unique serial number placed on each pack, together with tamper-evident packaging). The FMD also requires the establishment and management of a repositories system that will store the unique identifiers of the serial packs, and contain information on the safety features. The European Commission will determine the specifications of the serial number to be placed on packs when it sets out the rules for implementation in the “Delegated Acts”. Once the Delegated Acts are published – anticipated in the second half of 2014 – EU Member States and pharmaceutical companies supplying the EU market will have 3 years to take the necessary steps and ensure they are in compliance.

A solution in the European Stakeholder Model

In Europe, the FMD is an important step in better protecting patients from counterfeit medicines. The European Federation of Pharmaceutical Industries and Associations (EFPIA) sees the need to move as quickly as possible to ensure the legitimate supply chain is as safe as possible. One of the FMD’s key elements is the onus it places on pharmaceutical companies supplying the EU market to take the necessary steps and ensure they are in compliance.

* Certain products or product categories of prescription-only medicines might be exempted according to a risk assessment. Over-the-counter medicines, for instance, are excluded – unless there is a risk of falsification.
pharmacists, wholesalers, and parallel traders, respectively – came together with the aim of developing a system that will provide a high level of security for patients while being cost-effective, pan-European and interoperable, and capable of being effectively integrated into existing structures and practices in the distribution chain. The result is the European Medicines Verification System (EMVS; Figure 1), a system designed to ensure the medicines are making it safely from the point of manufacture to the point of sale – to the patient.

The EMVS proposed by EFPIA, EAPC, PGEU and GIRP is comprised of the European Hub and the National Blueprint Systems (nBPS). The European central hub is connected to a series of single-country or multi-country data repositories that serve as verification platforms; pharmacies and other registered parties can use these to check a product’s authenticity. The system will be interoperable between EU countries and will allow for the reconciliation of products traded between EU member states (known as parallel traded products) through the European central hub. It will also offer those countries that do not want to set up their own national system the opportunity to join an existing product verification infrastructure. These components are to be managed by the European Medicines Verification Organisation (EMVO), which is to be founded in the course of 2014 and foresees participation of authorities and other relevant stakeholders in the overall governance.

The EMVS was successfully tested in a pilot project in Sweden from 2009–2010. Stakeholders in Denmark, Finland, Norway and Sweden have already expressed their commitment to the Blueprint System. Meanwhile, development and implementation of the European Hub is well under way. By the first quarter of 2014, results are expected from user-accepted testing in Germany, in which the Hub was connected to the German securPharm system, demonstrating the first scenario covering the full information chain at European level – from manufacturer to pharmacy.

Fighting counterfeiting in a collaborative and comprehensive way

The measures set forth by the FMD, and the systems being developed to help implement its provisions are a major step forward in the EU against counterfeiting. But fighting counterfeiting requires a collaborative, multi-faceted effort. Part of this simply involves education: when it comes to the dangers of counterfeit medicines sold on the Internet, for instance, patients need to be aware that the vast majority of medicines they come across on the Internet are either counterfeit or unsafe.

The pharmaceutical industry invests huge amounts of time and money into developing medicines to treat a huge variety of illnesses – but this work is irrelevant if we can’t ensure that patients are safely receiving these medicines. Any medicine that reaches the patient should be in the same condition as when it leaves the manufacturing site. That is the goal of initiatives like the ESM and the FMD. The sooner we can implement such measures, the sooner we will be making patients that much safer.

References

1 BBC. Fake Xanax anxiety pills from China seized in Zurich; 18 October 2013. www.bbc.co.uk/news/world-europe-24585099

Editor’s comment:

EIPG, a stakeholder organisation representing the industrial pharmacists responsible for ensuring, under Art. 51 of the Directive, that the safety features have been affixed to the packaging of medicinal products, commented on the EMVS during a symposium at the University of Lisbon in 2012. In particular, EIPG expressed its concern that the model proposed only voluntary verification at the wholesaler dealer level, given that Art. 80(ca) of the Directive stipulates that “Wholesale distributors must verify that the medicinal products received are not falsified by checking the safety features on the outer packaging”.

securPharm is a national anti-counterfeiting initiative. Launched by German pharmaceutical manufacturing, pharmacist and wholesaler associations, it is designed to test whether medicinal products are genuine or not and is intended to comply with the EU FMD.
The current review period has seen a number of changes in the regulation of medicines and regulatory guidance in the EU, USA and International markets.

USA
Proposed regulation – administrative detention authority during inspection of drugs intended for human or animal use
Under this proposed regulation, the Food and Drug Administration (FDA) will be able to administratively detain drugs encountered during an inspection that an officer or employee conducting the inspection has reason to believe are adulterated or misbranded until FDA has had time to consider what action it should take concerning the drugs, and to initiate legal action, if appropriate.

Draft Guidance for Industry – Specification of the Unique Facility Identifier (UFI) System for Drug Establishment Registration
FDA’s preferred UFI for a drug establishment is the Data Universal Numbering System (DUNS) number. The DUNS number is available free of charge to all drug establishments. Alternative identifiers may only be used after consultation with FDA.

Europe
Q&A – Practical implementation guidelines on variations
Procedural elements in relation to the implementation of the revised guidelines are clarified.

Improving the safety of medical devices
Following the Poly Implant Prothèse breast implants and other scandals the European Commission has adopted two measures for immediate implementation. The new rules are:
• a Commission Implementation Regulation clarifying the criteria to be met by notified bodies;
• a Recommendation clarifying the tasks these bodies have to undertake when they perform audits and assessments.

Reflection paper – coated nanomedicines general issues for consideration
The reflection paper describes general issues to consider during the development of nanomedicines that have a coating.

MHRA
Can a single system simplify reporting of incidents to the MHRA?
The MHRA currently runs five reporting systems to collect reports of different types of incidents involving medicines, medical devices and blood. MHRA is considering whether bringing all five systems together under the Yellow Card Scheme brand (currently used for reporting side effects to medicines) could help increase incident reporting and reduce confusion of reporters.

Proposed introduction of Tell-and-Do variations for a specific subset of parallel import licenses
Parallel importers (PIs) must notify MHRA if they observe certain changes to the imported products (e.g. changed appearance of dosage forms). While MHRA is investigating the changes, there is a ‘stop-processing’ requirement on the importing companies which prohibits them from processing, repackaging or releasing the product onto the market until given approval. This can be an unexpected disruption of several months and affect the importer’s business negatively.

The new proposal abolishes the ‘stop-processing’ requirement if imported products are part of European Mutual Recognition or De-Centralised procedures. PIs will notify the Agency of the changes and release the products onto the UK market. This notification principle is known as ‘Tell-and-Do’.

Falsified Medicines Directive (FMD)
The UK MHRA has published on its website an overview of the medicines regulation and guidance in relation to the FMD as it applies to the UK.

Nicotine-containing products
The European parliament did not support The Commission’s proposal to regulate electronic cigarettes as medicines. MHRA, however, will continue to encourage companies voluntarily to seek a licence for their products.

Q&A for specials manufacturers
Q&As have been used in this guidance to promote easy updates

Continued on page 21
news from the EIPG

US Pharmacopoeial Convention
EIPG has received a formal invitation to be an observer organisation at the US Pharmacopoeial Convention. The organisation is looking for European candidates for the USP Council of Experts and Expert Committees to serve for the period of 2015–2020. Anyone wanting to impact public health, share expertise and collaborate with colleagues worldwide and add to their career experiences can apply online during the coming year (www.usp.org/) Please let us know if you are a member of your National Association within EIPG and are applying to become an expert for the USP.

Future training opportunities
Discussions are underway between EIPG and representatives of a training company which covers qualified persons (QP)/quality, quality by design and biopharmaceuticals aimed, in particular, at professionals who are working in companies operating in niche areas. The aim is to offer on-demand training for the members of EIPG Associations and those who visit our EIPG website.

October EIPG Bureau Meeting
The President and Treasurer’s visit to Bulgaria was reported and practical aspects of the General Assembly 2014 were considered. A series of points on medicines shortages were drafted including the working of Article 126a. The European Medicines Agency’s (EMA’s) dedicated facilities workshop attended by Piero Iamartino (VP, Italy) was discussed.

European Commission
Representatives of EIPG and the community and hospital pharmacists (PGEU and EAHP) attended a meeting with Dr Patrizia Tosetti, DG SANCO, to discuss medicines shortages. Various EIPG concerns were raised and some suggestions were made to her.

EMA
a. Comments on the revision of the GMP guidelines
EIPG submitted comments on the revision of the GMP guidelines (Annex 16) on certification by a QP and batch release.

b. Interested Parties Meeting
Claude Farrugia (VP, Malta) attended on behalf of EIPG. The EMA Workplan was discussed and David Cockburn, chair of the meeting, confirmed that cooperation and collaboration with industry is one of their fixed topics for consideration.

Presentations were made by representatives from Rx-360 and EXCiPACT on their auditing programmes, supply chain security and certification scheme for active pharmaceutical ingredients (APIs) and excipients.

APIC, the APIs Committee presented on their development of a “how to do” document to help industry to comply with good distribution practice (GDP) for APIs. A representative from EFPIA requested clarity on the interpretation of several requirements for GDP. Further information will be published on the discussions held during this meeting.

c. Dedicated Facilities Workshop
A report from Piero Iamartino (VP, Italy) who participated on behalf of EIPG is as follows.

The revised versions of EU GMP Chapters 3 and 5, together with the EMA-proposed guidance about a toxicological tool in evaluating dedicated manufacturing facilities, were discussed between EMA, its regulatory partners and the representatives of industry coordinated by EFPIA. The need to set health-based limits and to adopt quality risk management principles were agreed among all participants. However, industrial representatives requested a more flexible approach, though always being adequately justified. Amendments of the text were requested for IMPs (low toxicological data available), APIs (specific guidance to be added), genotoxic materials (threshold limit to be in line with ICH M7).

According to industry, a suitable implementation period is necessary for existing products, while the application to “new products” (definition still to be clarified) could start with usual timeframes after the guidance has been finalised. Authorities will provide a revision of the three documents and a second public consultation is expected to be held in 2014.

Jane Nicholson, Executive Director EIPG, jane@nicholj.plus.com

Regulatory Review
Continued from page 20

when further clarification on specific good manufacturing practice topics is required relating to the manufacture of unlicensed medicines. It does not replace any of the requirements already contained in Guidance Note 14.

International WHO
Good trade and distribution practices for pharmaceutical starting materials (revision)
A number of recent incidents have created awareness of the need for further improvement of the present guidelines. A new draft has been issued to a restricted audience for comment.

For further information on these and other topics we suggest you refer to the websites of relevant regulatory bodies and to current and past editions of “GMP Review News” published by Euromed Communications. To subscribe to this monthly news service contact info@euromedcommunications.com
Everything you need to know about the operation and management of cleanrooms

Edited by Tim Sandle and Madhu Raju Saghee

In 26 chapters and over 600 pages this book provides a unique tool to help you achieve regulatory compliance. It first creates a foundation in history and established practice and then helps you understand how state of the art technology and engineering solutions can deliver the best practice and so provide reliable systems performance.

Wide application

Covers all aspects of cleanroom operations for pharmaceutical cleanrooms, hospital pharmacies and research laboratories.

Expert advice

The chapters are written by acknowledged international experts from companies involved in every aspect of cleanroom management, each providing practical advice and information.

International

The book includes guidance to regulatory approaches and legislation in Europe, Asia and the USA.

"This book is unlike any other cleanroom-related book I have read, in that it contains all the necessary information in one publication. ... each of the chapters contains an abundance of detailed information on the specific topic, with excellent references."

European Journal of Parenteral and Pharmaceutical Sciences

order online at www.euromedcommunications.com
Or contact the publishers: email: publisher@euromedcommunications.com; Tel: +44 (0)1428 752222; Fax: +44 (0)1428 752223.
events

JANUARY

21-23 January 2014 – Frankfurt, Germany
Clinical Supply Chain
www.pharma-iq.com

22-24 January 2014 – London, UK
Understanding and Preparing the Quality and Pharmaceutical Module
www.pti-global.co.uk

28-29 January 2014 – Berlin, Germany
Protective Packaging Solutions for Pharmaceutical Product Stability
www.gmp-compliance.org

28-29 January 2014 – London, UK
Joint Regulators/Industry QbD Workshop
www.pda.org

28-29 January 2014 – London, UK
11th Annual Pharmaceutical Compliance Congress
www.cbinet.com

18-20 February 2014 – Munich, Germany
6th Disposable Solutions for Biomanufacturing Summit
www.disposablebiomanufacturing.com

24-25 February 2014 – Washington DC, USA
2014 Aseptic Annual Conference
www.ispe.org

24-27 February 2014 – Montreal, Quebec, Canada
12th Annual Cold Chain GDP & Temperature Management Logistics Summit
www.coldchainpharm.com

25-26 February 2014 – Barnard Castle, UK
Cleaning Validation
www.honeyman.co.uk

27-28 February 2014 – London, UK
Process Validation for Pharmaceutical Products Regulated by EMA & FDA – Balancing Science and Risk during the Product Lifecycle
www.management-forum.co.uk

FEBRUARY

4-5 February 2014 – London, UK
EU Biosimilar Registration and Marketing Requirements
www.pti-global.co.uk

6 February 2014 – London, UK
Developments in Analysis of Orally Inhaled and Nasal Drug Products
www.jpag.org

11 February 2014 – Manchester, UK
Good Clinical Practice Symposium
www.mhra.gov.uk

18-19 February 2014 – Brussels, Belgium
6th Annual Disposable Solutions for Biomanufacturing
www.pharma-iq.com

18-19 February 2014 – Berlin, Germany
Pharmaceutical Microbiology
www.pda.org

MARCH

4-5 March 2014 – London, UK
Clinical Outsourcing & Partnership World 2014
www.healthnetworkcommunicatons.com

11-12 March – Brussels, Belgium
Parenteral Packaging
www.pda.org

13 March 2014 – London, UK
The Pharma Summit 2014 – Reinventing Business Models and Markets
www.economistconferences.co.uk

17-18 March 2014 – London, UK
Distribution of Medicines – The New EU Good Distribution Practice Guide...Are You Prepared?
www.management-forum.co.uk

14 March 2014 – London, UK
Good Clinical Practice Symposium 2014
www.mhra.gov.uk

24-26 March 2014 – Heidelberg, Germany
ICH Q7 Compliance for APIs Manufactured by Chemical Synthesis
www.gmp-compliance.org

25-26 March 2014 – Lyon, France
Modern Biopharmaceutical Manufacturing
www.pda.org

26-27 March 2014 – Frankfurt, Germany
4th Annual Pharma Packaging & Labeling Forum
www.flemingeurope.com

26-28 March 2014 – Barcelona, Spain
19th Congress of the EAHP: The Innovative Hospital Pharmacist – Imagination, Skills and Organisation
www.eahp.eu

31 March - 3 April 2014 – Lisbon, Portugal
9th Pharmaceuticals, Biopharmaceutics and Pharmaceutical Technology World Meeting
www.apv-mainz.de

APRIL

1-4 April 2014 – Barcelona, Spain
World Generic Medicines Congress Europe 2014
www.healthnetworkcommunicatons.com

1-4 April 2014 – Barcelona, Spain
Biosimilar Drug Development World Europe
www.healthnetworkcommunicatons.com

2-3 April 2014 – Prague, Czech Republic
10th Annual BioProcess International European Summit
www.informa-ls.com

2-3 April 2014 – Barcelona, Spain
World Generic Medicines Congress Europe 2014
www.terrapinn.com