advanced therapies Archives - European Industrial Pharmacists Group (EIPG)

PIC/S Annual Report 2021


by Giuliana Miglierini The Annual Report of the Pharmaceutical Inspection Co-operation Scheme (PIC/S) resumes the many activities and results achieved in 2021, despite the ongoing pandemic that required remote coordination and on-line virtual meetings. To this regard, a written procedure Read more

Joint implementation plan for the IVDR regulation


by Giuliana Miglierini Regulation (EU) 2017/746 (IVDR), establishing the new legislative framework for in vitro diagnostic medical devices (IVDs), will entry into force on 26 May 2022. The Medical Device Coordination Group (MDCG) has published an updated version of the Read more

Key issues in technical due diligences


by Giuliana Miglierini Financial due diligence is a central theme when discussing mergers and acquisitions (M&A). Not less important for the determination of the fair value of the deal and the actual possibility to integrate the businesses are technical due Read more

Trends in the development of new dosage forms

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

Oral solid dosage (OSD) forms (i.e. capsules and tablets) historically represent the most easy and convenient way for the administration of medicines. Recent years saw an increasing role of new approaches to treatment based on the extensive use of biotechnology to prepare advanced therapies (i.e. cellular, gene and tissue-based medicinal products). These are usually administered by i.v. injections or infusions, and may pose many challenges to develop a suitable dosage form, as acknowledged for example by the use of new lipid nanoparticles for the formulation of the mRNA Covid-19 vaccines.

The most recent trends in the development of new dosage forms have been addressed by Felicity Thomas from the column of Pharmaceutical Technology.

The increasing complexity of formulations is due to the need to accommodate the peculiar characteristics of biological macro-molecules and cellular therapies, which are very different from traditional small-molecules. Bioavailability and solubility issues are very typical, for example, and ask for the identification of new strategies for the setting up of a suitable formulation. The sensitivity of many new generation active pharmaceutical ingredients (APIs) to environmental conditions (i.e. temperature, oxygen concentration, humidity, etc.) also poses many challenges. Another important target is represented by the need to improve the compliance to treatment, to be pursued through the ability of patients to self-administer also injectable medicines using, for example, specifically designed devices. The parenteral administration of medicines has become more acceptable to many patients, especially in the case of serious indications and when auto-injectors are available, indicates another PharmTech’s article.

According to the experts interviewed by Felicity Thomas, there is also room for the development of new oral solid dosage forms for the delivery of biological medicines, as well as for OSD forms specifically designed to address the needs of paediatric and geriatric patients.

Some examples of technological advancements

Productive plants based on the implementation of high containment measures (i.e. isolators and RABS) are widely available to enable the entire manufacturing process to occur under “sea led” conditions, thus allowing for the safer manipulation of high potency APIs and the prevention of cross-contamination. Process analytical technologies (PAT), digital systems and artificial intelligence (AI) can be used to improve the overall efficiency of the formulation process. This may also prove true for previously “undruggable” proteins, that thanks to the AI can now become “druggable” targets denoted by a very high potency (and a low stability, thus asking for specific formulation strategies).

Advances in material sciences and the availability of new nanotechnology can support the development of oral formulations characterised by improved efficacy and bioavailability. To this instance, the article mentions the example of new softgel capsules able to provide inherent enteric protection and extended-release formulation. Functional coating, non-glass alternatives for injectables, and new excipients may also play an important role in the development of new formulations, such as controlled-release products, multi-particulates, orally disintegrating tablets, intranasal dosage forms, fixed-dose combinations.

 The ability to establish a robust interaction with the suppliers enables the development of “tailor-made” specifications for excipients, aimed to better reflect the critical material attributes of the drug substance. The ability to formulate personalised dosage forms may prove relevant from the perspective of the increasingly important paradigm of personalised medicine, as they may better respond to the genetic and/or epigenetic profile of each patient, especially in therapeutic areas such as oncology.

Not less important, advancements of processing techniques used to prepare the biological APIs (for example, the type of adeno-viral vectors used in gene therapy) are also critical; to this regard, current trends indicate the increasing relevance of continuous manufacturing processes for both the API and the dosage form.

 Injectable medicines may benefit from advancements in the understanding of the role played by some excipients, such as polysorbates, and of the interactions between the process, the formulation and the packaging components. Traditional techniques such as spray drying and lyophilisation are also experiencing some advancements, leading to the formulation of a wider range of biomolecules at the solid or liquid states into capsules or tablets.

New models for manufacturing

API solubility often represents a main challenge for formulators, that can be faced using micronization or nano-milling techniques, or by playing with the differential solubility profile of the amorphous vs crystalline forms of the active ingredient (that often also impact on its efficacy and stability profile).

As for the manufacturing of OSD forms, 3D printing allows the development of new products comprehensive of several active ingredients characterised by different release/dissolution profiles. This technology is currently represented, mostly in the nutraceutical field, and may prove important to develop personalised dosage forms to be rapidly delivered to single patients. 3D printing also benefits from advancements in the field of extrusion technologies, directly impacting on the properties of the materials used to print the capsules and tablets.

Artificial intelligence is today of paramount importance in drug discovery, as it allows the rapid identification of the more promising candidate molecules. Smart medical products, such as digital pills embedding an ingestible sensor or printed with special coating inks, enable the real-time tracking of the patient’s compliance as well as the monitoring “from the inside” of many physiological parameters. This sort of technology may also be used to authenticate the medicinal product with high precision, as it may incorporate a bar code or a spectral image directly on the dosage form. Dosage flexibility may benefit from the use of mini-tablets, that can be used by children as well as by aged patients experiencing swallowing issues.

The peculiarities of the OTC sector

Over-the-counter (OTC) medicines present some distinctive peculiarities compared to prescription drugs. According to an article on PharmTech, since the mid-‘80s the OTC segment followed the dynamics characteristic of other fast-moving consumer packaged goods (FMCG) industries (e.g., foods, beverages, and personal care products), thus leading to a greater attention towards the form and sensory attributes of the dosage form.

The following switch of many prescription medicines to OTC, in the ‘90s, reduced the difference in dosage forms between the two categories of medicinal products. Today, the competition is often played on the ability to provide patients with enhanced delivery characteristics, for example in the form of chewable gels, effervescent tablets for hot and cold drinks, orally disintegrating tablets and confectionery-derived forms. The availability of rapid or sustained-released dosage forms and long-acting formulations, enabling the quick action or the daily uptake of the medicine, is another important element of choice. Taste-masking of API’s particles is a relevant characteristic, for example, to make more acceptable an OSD form to children; this is also true for chewable tablets and gels, a “confectionery pharmaceutical form” often used to formulate vitamins and supplements.


Automation of aseptic manufacturing

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giliana Miglierini

The pharmaceutical industry is often the last industrial sector to implement many new manufacturing and methodological procedures. One typical example is Lean production, those concepts were developed in the automotive industry well before their adoption in the pharmaceutical field. The same may also apply to automation: it appears time is now mature to see an increasing role of automated operations in the critical field of aseptic manufacturing, suggests an article by Jennifer Markarian on PharmTech.com.

The main added value of automation is represented by the possibility to greatly reduce the risk of contamination associated to the presence of human operators in cleanrooms. A goal of high significance for the production of biotech, advanced therapies, which are typically parenterally administered. Automation is already taking place in many downstream processes, for example for fill/finish operations, packaging or warehouse management.

The advantages of the automation of aseptic processes

The biggest challenges engineers face when designing isolated fill lines are fitting the design into a small, enclosed space; achieving good operator ergonomics; and ensuring all systems and penetrations are leak-tight and properly designed for cleanability and [hydrogen peroxide] sterilization,” said Joe Hoff, CEO of robotics manufacturer AST, interviewed by Jennifer Markarian.

The great attention to the development of the Contamination Control Strategy (CCS) – which represents the core of sterile manufacturing, as indicated by the new Annex 1 to GMPs – may benefit from the insertion of robots and other automation technologies within gloveless isolators and other types of closed systems. This passage aims to completely exclude the human presence from the cleanroom and is key to achieve a completely segregated manufacturing environment, thus maximising the reduction of potential risks of contamination.

The new approach supports the pharmaceutical industry also in overcoming the often observed reluctance to innovate manufacturing processes: automation is now widely and positively perceived by regulators, thus contributing to lowering the regulatory risks linked to the submission of variations to the CMC part of the authorisation dossiers. High costs for the transitions to automated manufacturing – that might include the re-design of the facilities and the need to revalidate the processes – still represent significant barriers to the diffusion of these innovative methodologies for pharmaceutical production.

The elimination of human intervention in aseptic process was also a requirement of FDA’s 2004 Guideline on Sterile Drug Products Produced by Aseptic Processing and of the related report on Pharmaceutical CGMPs for the 21st Century: A Risk-Based Approach. According to Morningstar, for example, the FDA has recently granted approval for ADMA Biologics’ in-house aseptic fill-finish machine, an investment aimed to improve gross margins, consistency of supply, cycle times from inventory to production, and control of batch release.

Another advantage recalled by the PharmTech’s article is the availability of highly standardized robotics systems, thus enabling a great reduction of the time needed for setting up the new processes. The qualification of gloves’ use and cleaning procedures, for example, is no longer needed, impacting on another often highly critical step of manufacturing.

Easier training and higher reproducibility of operative tasks are other advantages offered by robots: machines do not need repeated training and testing for verification of the adherence to procedures, for example, thus greatly simplifying the qualification and validation steps required by GMPs. Nevertheless, training of human operators remains critical with respect to the availability of adequate knowledge to operate and control the automated systems, both from the mechanical and electronic point of view.

Possible examples of automation in sterile manufacturing

Robots are today able to perform a great number of complex, repetitive procedures with great precision, for example in the handling of different formats of vials and syringes. Automatic weighing stations are usually present within the isolator, so to weight empty and full vials in order to automatically adjust the filling process.

This may turn useful, for example, with respect to the production of small batches of advanced therapy medicinal products to be used in the field of precision medicine. Robots can also be automatically cleaned and decontaminated along with other contents of the isolator, simplifying the procedures that have to be run between different batches of production and according to the “Cleaning In Place” (CIP) and “Sterilisation In Place” (SIP) methodologies.

The design and mechanical characteristics of the robots (e.g. the use of brushless servomotors) make the process more smooth and reproducible, as mechanical movements are giving rise to a reduced number of particles.

Examples of gloveless fully sealed isolators inclusive of a robotic, GMP compliant arm were already presented in 2015 for the modular small-scale manufacturing of personalised, cytotoxic materials used for clinical trials.

Maintenance of the closed system may be also, at least partly, automated, for example by mean of haptic devices operated by remote to run the procedure the robotic arm needs to perform. Implementation of PAT tools and artificial intelligence algorithms offers opportunities for the continuous monitoring of the machinery, thus preventing malfunctioning and potential failures. The so gathered data may also prove very useful to run simulations of the process and optimization of the operative parameters. Artificial intelligence may be in place to run the automated monitoring and to detect defective finished products.

Automated filling machines allow for a high flexibility of batch’s size, from few hundreds of vials per hour up to some thousands. The transfer of containers along the different stations of the process is also automated. The implementation of this type of processes is usually associated with the use of pre-sterilised, single-use materials automatically inserted within the isolator (e.g. primary containers and closures, beta bags and disposal waste bags).

Automation may also refer to microbial monitoring and particle sampling operations to be run into cleanrooms, in line with the final goal to eliminate the need of human intervention.

Comparison of risks vs manual processes

A comparison of risks relative to various types of aseptic preparation processes typically run within a hospital pharmacy and performed, respectively, using a robot plus peristaltic pump or a manual process was published in 2019 in Pharm. Technol. in Hospital Pharmacy.

Production “on demand” of tailor-made preparations has been identified by authors as the more critical process, for which no significant difference in productivity is present between the manual and automated process. The robotic process proved to be superior for standardised preparations either from ready to use solutions or mixed cycles. A risk analysis run using the Failure Modes Effects and Criticality Analysis (FMECA) showed a lower level of associated risk.