cross-contamination Archives - European Industrial Pharmacists Group (EIPG)

Patient involvement in the development, regulation and safe use of medicines

by Giuliana Miglierini The Council for International Organizations of Medical Sciences (CIOMS) has published the CIOMS report on “Patient involvement in the development, regulation and safe use of medicines”. The report marks an important step forward towards a harmonised approach to Read more

Webinar: Implementation of Contamination Control Strategy Using the ECA template

The next EIPG webinar will be held in conjunction with PIER and University College Cork on Friday 21st of October 2022 (16.00 CEST), on the implementation of Contamination Control Strategy (CCS) using the ECA* template. This is the second Read more

Real-world evidence for regulatory decision-making

by Giuliana Miglierini Digitalisation is rapidly advancing also in the regulatory field, as a tool to improve the efficiency and accuracy of processes used for the generation and use of data to inform the regulatory decision-making. To this instance, real-world Read more

Key issues in technical due diligences

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

Financial due diligence is a central theme when discussing mergers and acquisitions (M&A). Not less important for the determination of the fair value of the deal and the actual possibility to integrate the businesses are technical due diligences, assessing the technological platforms and product portfolios to be acquired. A series of articles published in Outsourced Pharma discussed, under different perspectives, the main issues encountered in technical due diligences. We provide a summary of main messages to be kept in mind while facing this type of activity.

Technical due diligence of pharmaceutical products

The third millennium is being highly characterised by the closure of many M&A operations in the biopharma sector as a way to support the transfer of new technological platforms from their originators – usually an innovative start-up or spin-off company – to larger multinational companies. The latter are usually managing advanced clinical phases of development and regulatory procedures needed to achieve market authorisation in the territories of interest.

Furthermore, the acquisition of already marketed products often represents a way to renew the product portfolio or to enter new markets. Should this be the case, an article by Anthony Grenier suggests that a main target is represented by the understanding of how the products were maintained on the market by the seller company.

The restructuring of assets following acquisition may require the transfer of products manufacturing to sites of the acquiring company, or the possibility to use the services of a Contract Manufacturing Organisation (CMO). These are all issues that should enter the technical due diligence, that usually includes the exchange of information about the product, equipment, manufacturing, quality, and regulatory aspects of the deal.

The regulatory and quality perspectives

Regulatory due diligence takes into consideration the approval status of the interested products in target markets. Relevant documentation to be examined include the CMC dossier (Chemistry, Manufacturing, and Controls) and/or the Common Technical Document (CTD), and the current status of approval procedures undergoing, for example, at the FDA in the US or the European Medicines Agency in the EU. A possible issue mentioned by Anthony Grenier refers to the assessment and management of dossiers relative to unfamiliar markets, that may differ as for regulatory requirements and thus need the availability of dedicated internal resources or consultants. This type of considerations may impact also on the selection of CMOs; the transfer of older dossiers is also challenging, as they often do not reflect current requirements and standards and may require significant investments (including the request of additional studies) to support the submission of variations.

A visit to the facility manufacturing the product during the second round of bidding, in order to better understand issues related to the technology transfer, is also suggested. Technical documentation available to assessors should include copies of batch records and specifications for raw materials, active ingredients, and drug products. Analysis of the annual trends in manufacturing may be also useful, as for example a high number of rejected batches may indicate the need for a reformulation of the product.

From the quality perspective, the due diligence should also examine issues with supply or quality agreements, and the date of the last revision of documents. Examples of relevant documentation to be examined include process validation reports, change control lists, stability studies, inspection reports, etc.

The manufacturing perspective

In a second article, A. Grenier examined technical due diligence from the perspective of manufacturing, equipment and logistics.

The manufacturing process is key to ensure the proper availability of the product in the target markets, and it should be correctly transferred to the acquiring company or the CMO. To this instance, executed batch records are important to provide information on actual process parameters, processing times, and yields. Here again, process validation reports and master supply agreements provide information on the robustness of the processes and the steady supply of raw materials.

Consideration should also be paid to the transfer of any product-dedicated equipment involved in the manufacturing or packaging process, including its actual ownership. The time period for technology transfer should be long enough (at least 12 months) to ensure for the proper execution of all operations.

From the logistics point of view, it is important to understand the need to update printed components to reflect the new ownership of the product, a task that may result complex should it be marketed in many different countries and/or in many different dosage forms. Inventories of all raw materials, APIs, and packaging components should be also assessed, paying a particular attention to narcotic products for which specific production quotas may be present in some countries (e.g. the US).

Technical due diligence of entire facilities

M&A deals often involve the acquisition of one or more manufacturing facilities and other complex industrial assets. Anthony Grenier also examined the key factors impacting on this type of technical due diligence.

The “technical fit” between the two companies involved in the deal is a primary target for assessment, in order to evaluate the achievable level of integration and the existing gaps in experience to be filled. This may refer, for example, to the acquisition of a manufacturing plant for non-sterile products that would need to be converted for aseptic manufacturing: a goal that may require the building of new areas, thus the availability of enough space to host them. Experience of the staff is also highly valuable, as well as the successful introduction of new equipment.

Capacity of the plant should also be considered, neither in excess or defect with respect to the effective needs in order to avoid waste of resources or need of new investments. Experience of the seller company in CMO may be also relevant, as it may be used to fill some of the excess capacity. To this instance, the fields of specialisation and the availability of containment capability to avoid cross contamination are important parameters to be considered.

Compliance of the facility to regulatory requirements arising from the different target markets should also be assessed, as it impacts on the positive outcomes of inspections.

Highly complex technical due diligences

Technical due diligence becomes even more complex in the case of multi-site acquisitions. In this case, visits to assess specificities of the single facilities involved in the operation may be needed. The above mentioned parameters of technical fit, capacity and compliance should be always considered, and the take-at-home message from the A. Grenier is for the acquiring companies to “look for the weakest links that would prohibit them from bringing their product or technology to the sites to be acquired”. Capacity optimisation may be needed, for example.

The different steps of technical due diligence have been also examined in another article by Anne Ettner and Norbert Pöllinger published in Pharm. Ind.. They presented a mind map that clarifies the complexity of the items that should enter the due diligence process, and lists typical documents and questions that should be taken into consideration. Examples and case studies are also provided relative to the assessment of starting materials, the evaluation of the pharmaceutical formulations and that of the production process.

Trends in the development of new dosage forms

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

Oral solid dosage (OSD) forms (i.e. capsules and tablets) historically represent the most easy and convenient way for the administration of medicines. Recent years saw an increasing role of new approaches to treatment based on the extensive use of biotechnology to prepare advanced therapies (i.e. cellular, gene and tissue-based medicinal products). These are usually administered by i.v. injections or infusions, and may pose many challenges to develop a suitable dosage form, as acknowledged for example by the use of new lipid nanoparticles for the formulation of the mRNA Covid-19 vaccines.

The most recent trends in the development of new dosage forms have been addressed by Felicity Thomas from the column of Pharmaceutical Technology.

The increasing complexity of formulations is due to the need to accommodate the peculiar characteristics of biological macro-molecules and cellular therapies, which are very different from traditional small-molecules. Bioavailability and solubility issues are very typical, for example, and ask for the identification of new strategies for the setting up of a suitable formulation. The sensitivity of many new generation active pharmaceutical ingredients (APIs) to environmental conditions (i.e. temperature, oxygen concentration, humidity, etc.) also poses many challenges. Another important target is represented by the need to improve the compliance to treatment, to be pursued through the ability of patients to self-administer also injectable medicines using, for example, specifically designed devices. The parenteral administration of medicines has become more acceptable to many patients, especially in the case of serious indications and when auto-injectors are available, indicates another PharmTech’s article.

According to the experts interviewed by Felicity Thomas, there is also room for the development of new oral solid dosage forms for the delivery of biological medicines, as well as for OSD forms specifically designed to address the needs of paediatric and geriatric patients.

Some examples of technological advancements

Productive plants based on the implementation of high containment measures (i.e. isolators and RABS) are widely available to enable the entire manufacturing process to occur under “sea led” conditions, thus allowing for the safer manipulation of high potency APIs and the prevention of cross-contamination. Process analytical technologies (PAT), digital systems and artificial intelligence (AI) can be used to improve the overall efficiency of the formulation process. This may also prove true for previously “undruggable” proteins, that thanks to the AI can now become “druggable” targets denoted by a very high potency (and a low stability, thus asking for specific formulation strategies).

Advances in material sciences and the availability of new nanotechnology can support the development of oral formulations characterised by improved efficacy and bioavailability. To this instance, the article mentions the example of new softgel capsules able to provide inherent enteric protection and extended-release formulation. Functional coating, non-glass alternatives for injectables, and new excipients may also play an important role in the development of new formulations, such as controlled-release products, multi-particulates, orally disintegrating tablets, intranasal dosage forms, fixed-dose combinations.

 The ability to establish a robust interaction with the suppliers enables the development of “tailor-made” specifications for excipients, aimed to better reflect the critical material attributes of the drug substance. The ability to formulate personalised dosage forms may prove relevant from the perspective of the increasingly important paradigm of personalised medicine, as they may better respond to the genetic and/or epigenetic profile of each patient, especially in therapeutic areas such as oncology.

Not less important, advancements of processing techniques used to prepare the biological APIs (for example, the type of adeno-viral vectors used in gene therapy) are also critical; to this regard, current trends indicate the increasing relevance of continuous manufacturing processes for both the API and the dosage form.

 Injectable medicines may benefit from advancements in the understanding of the role played by some excipients, such as polysorbates, and of the interactions between the process, the formulation and the packaging components. Traditional techniques such as spray drying and lyophilisation are also experiencing some advancements, leading to the formulation of a wider range of biomolecules at the solid or liquid states into capsules or tablets.

New models for manufacturing

API solubility often represents a main challenge for formulators, that can be faced using micronization or nano-milling techniques, or by playing with the differential solubility profile of the amorphous vs crystalline forms of the active ingredient (that often also impact on its efficacy and stability profile).

As for the manufacturing of OSD forms, 3D printing allows the development of new products comprehensive of several active ingredients characterised by different release/dissolution profiles. This technology is currently represented, mostly in the nutraceutical field, and may prove important to develop personalised dosage forms to be rapidly delivered to single patients. 3D printing also benefits from advancements in the field of extrusion technologies, directly impacting on the properties of the materials used to print the capsules and tablets.

Artificial intelligence is today of paramount importance in drug discovery, as it allows the rapid identification of the more promising candidate molecules. Smart medical products, such as digital pills embedding an ingestible sensor or printed with special coating inks, enable the real-time tracking of the patient’s compliance as well as the monitoring “from the inside” of many physiological parameters. This sort of technology may also be used to authenticate the medicinal product with high precision, as it may incorporate a bar code or a spectral image directly on the dosage form. Dosage flexibility may benefit from the use of mini-tablets, that can be used by children as well as by aged patients experiencing swallowing issues.

The peculiarities of the OTC sector

Over-the-counter (OTC) medicines present some distinctive peculiarities compared to prescription drugs. According to an article on PharmTech, since the mid-‘80s the OTC segment followed the dynamics characteristic of other fast-moving consumer packaged goods (FMCG) industries (e.g., foods, beverages, and personal care products), thus leading to a greater attention towards the form and sensory attributes of the dosage form.

The following switch of many prescription medicines to OTC, in the ‘90s, reduced the difference in dosage forms between the two categories of medicinal products. Today, the competition is often played on the ability to provide patients with enhanced delivery characteristics, for example in the form of chewable gels, effervescent tablets for hot and cold drinks, orally disintegrating tablets and confectionery-derived forms. The availability of rapid or sustained-released dosage forms and long-acting formulations, enabling the quick action or the daily uptake of the medicine, is another important element of choice. Taste-masking of API’s particles is a relevant characteristic, for example, to make more acceptable an OSD form to children; this is also true for chewable tablets and gels, a “confectionery pharmaceutical form” often used to formulate vitamins and supplements.