data integrity Archives - European Industrial Pharmacists Group (EIPG)

A new member within EIPG


The European Industrial Pharmacists Group (EIPG) is pleased to announce the Romanian Association (AFFI) as its newest member following the annual General Assembly of EIPG in Rome (20th-21st April 2024). Commenting on the continued growth of EIPG’s membership, EIPG President Read more

The EU Parliament voted its position on the Unitary SPC


by Giuliana Miglierini The intersecting pathways of revision of the pharmaceutical and intellectual property legislations recently marked the adoption of the EU Parliament’s position on the new unitary Supplementary Protection Certificate (SPC) system, parallel to the recast of the current Read more

Reform of pharma legislation: the debate on regulatory data protection


by Giuliana Miglierini As the definition of the final contents of many new pieces of the overall revision of the pharmaceutical legislation is approaching, many voices commented the possible impact the new scheme for regulatory data protection (RDP) may have Read more


Trends for the future of the pharmaceutical manufacturing

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

By Giuliana Miglierini

The technological evolution of pharmaceutical manufacturing towards the full implementation of the Industry 4.0 paradigm is rapidly advancing. Digitalisation of productions is supported by the wide spread of automation, devices connected to the Internet of Things, and machine learning algorithms able to keep entire processes under control. Looking at pharmaceutical development, new types of treatments are emerging, also requiring a retuning of current approaches. Results from a survey among experts and industry insiders (56 respondents from 13 different countries) run by Connect in Pharma show new challenges are to be faced in the incoming years by the pharmaceutical industry in order to maintain its market position.

The combined value of the global pharmaceutical market in 2022 is estimated to be approx $650 billion. The main component reflects pharmaceutical manufacturing (US$ 526 billion in 2022, data Insight Slice), while the global pharmaceutical packaging market value is roughly US$131 billion (data Fact.MR).

Many different factors supporting the transformation of pharmaceutical manufacturing have been identified by Connect in Pharma, ranging from ageing of population to Covid19 and Ukraine crisis, to climate change and pressures on energy costs, up to the shortage of healthcare professionals. The final conclusions and opportunities identified by the report indicate new partnerships and collaborations (mainly with startups, and small and medium-sized companies) will remain fundamental to support competitiveness, together with growing investments in tech-driven innovations. Involvement of patients and healthcare professionals in identifying unmet needs and optimal solutions is another item to be considered in order to increase adherence to therapy, suggests the report.

Digitalisation still waiting to full exploit its potential

Innovation in automation and digitalisation of processes has been introduced in the pharmaceutical sector at a slower pace compared to other industrial sectors, due to its higher regulatory barriers. About one third (28%) of respondents to the survey indicated their companies are developing artificial intelligence (AI) or other digital tools for application in the manufacturing and packaging process. The main drivers towards the implementation of such systems are more efficient data collection, reduction of manufacturing down times and human errors, and the use of machine learning to support continuous manufacturing. Better workflow integration and anticounterfeiting, and the ability to share supply chain data with regulators are also relevant. These are all objectives that would need to provide new specific training to the workforce, e.g. on AI or tools for augmented reality.

One of the main barriers that, according to the report, is still slowing down the full potential of AI and digitalisation in the pharmaceutical industry is represented by the need to comply to regulations, including data integrity and security. The human factor may also prove relevant, as many people (including top management) may be reluctant to accept this change in technology. The availability of data scientists with a deep knowledge of the pharmaceutical sector is another critical point to be addressed.

Advances in drug delivery technologies

Connect in Pharma’s report also shed light on some drug delivery technologies that, despite not being an absolute novelty, are gaining relevance for the development of new products and treatments.

The moving of pharmaceutical pipelines towards a continuously increasing number of new biologic / biosimilar products, including mRNA-based and gene therapies, requires the availability of manufacturing and packaging capacities able to accommodate the specific needs of such often very unstable macromolecules. New drug delivery systems have been developed in recent years to provide answers to this need, among which is inhalation technology.

Dry powder inhalers and nasal delivery devices are the preferred formulations for the 50% of respondents to the survey that indicated actions are ongoing to develop new products using inhalation technologies. According to the report, these devices might prove particularly useful to deliver drugs that need to rapidly pass the blood-brain barrier in order to become effective, as well as for the delivery of vaccines. Fast absorption and higher bioavailability compared to other routes of administration are other elements of interest for inhalation technologies, which is also believed to be able to contribute to the reduction of carbon footprint.

Once again, the regulatory environment resulting from the entry into force of the EU Medical Devices Regulation (especially for drug-device combination products), together with the need to demonstrate patient safety and satisfactory bioavailability of these devices, are among the main barriers to their development, says the report. Inhalation technologies may also give rise to a new generation of delivery devices connected to the Internet of Medical Things (IoMT).

Another major trend identified by Connect in Pharma refers to the development of new drug delivery systems for injectable medicines (50% of respondents). This area is greatly impacted by the entry into force of the revised Annex 1 to GMPs, on 25 August 2023, that will increase the requirements for aseptic manufacturing. According to the report, main areas of innovation in this field may include new devices for injectable drug delivery, namely targeted to diabetes (the leading area of innovation), intravitreal ocular injection, autoimmune diseases, oncology, respiratory therapy, and pain management.

Connected devices

Diabetes is a highly relevant field of innovation also with respect to the implementation of connected devices, those embedded sensors and electronics allow for the real-time collection of data on self-administration of the therapy by patients, and their forwarding to health professionals. AI algorithms further enhance the potential of connected devices delivering diabetes treatments, as they support the real-time monitoring of insulin concentration in blood, and the consequent level of insulin delivered by the device. According to Connect in Pharma, other positive characteristics arising from the use of connected devices refer to the possible increase of patient adherence and compliance to treatment, resulting in improved patient outcomes and more personalised treatment.

Regulatory barriers are once again a main burden to the wider spread of connected devices, says the report, due for instance to the ultimate control over the sharing of data, and the choice if to implement single-use or reusable devices. Manufacturing costs, cybersecurity, and patient hesitancy are other hurdles identified by respondents to the survey.

The challenges for sustainability

The green policies put in place especially in the EU are calling industry to revise its processes and products to decrease their environmental impact, improve sustainability of manufacturing and packaging processes, so to eventually meet the climate targets fixed for 2050. According to the report, the global healthcare sector would be responsible for 4.4% of global net emissions. Connect in Pharma’s survey indicates 66% of involved companies are working to implement more sustainable practices. These may include for example the use of recycled materials in secondary packaging, the implementation of energy efficient technologies, and the development of more ecofriendly drug delivery systems. Costs have been identified as the main barrier to transition, together with the lack of common definitions. According to some of the experts, a wider use of data to monitor manufacturing systems and processes may help in improving the overall efficiency and in lowering the carbon footprint. Transport, for example, has a great impact on the sustainability of packaging.


ECA’s guide to compliant equipment design

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

By Giuliana Miglierini

The legislative evolution of the last decades emphasised requirements for equipment used in pharmaceutical productions. This is even more true with the entry into force of the new Annex 1 to the GMPs, characterised by many new requirements impacting on different manufacturing processes (i.e. production of water for injection, sterilisation, Form-Fill-Seal and Blow-Fill-Seal technologies, single use systems, lyophilisation, etc.).

Each pharmaceutical process requires the careful design of the needed equipment in order to provide the expected efficiency and performance. Furthermore, some equipment may be used for different industrial applications (e.g. pharmaceutical, cosmetic or food), thus needing a fine tuning to reflect relevant requirements. In pharmaceutical manufacturing, a further step of complexity may be represented by the need to handle highly potent active pharmaceutical ingredients, requiring isolators to segregate production, etc.

To facilitate the correct design of equipment compliant to GMPs, a new guidance document has been published by the ECA Foundation. The document was initially drafted in German by a task force of experts in pharmaceutical technology and engineering and published by Concept Heidelberg, and it has now been translated in English

Elements relevant to reach compliance

The first part of the document discusses general requirements that should always be part of the design of GMP-compliant equipment. Four different points of attention are listed: the equipment must not adversely affect the product quality, it must be easy to clean, it must comply with applicable technical rules, and it must be fit for its intended use.

As for the first point, “The question is rather what is tolerable without adversely affecting the product quality”, states the guidance. Avoidance of contamination and cross-contamination are the main goals of cleaning activities, both for sterile and non-sterile medicinal products. There are several issues to be taken in mind from this perspective, including the presence of endotoxins, sealing points, the efficiency of cleaning-in-place (CIP) processes, or the presence of unreachable dead leg areas. According to the guidance, the 3D/6D rule for the prevention of dead legs in water systems often used for specification would not always be correctly applied, due to some confusion in terminology. Official GMPs are also deemed “very vague”, as they are not drafted by engineers and apply to an extremely wide range of different equipment and processes. “Consequently, the question is, which technical rules have to be followed or where the actual state of the art can be looked up”, says the document. Many different references are possible, from pharmacopeia monographs and regulatory guidelines, to ISO standards, and other documents published by international professional bodies.

Qualification and calibration of equipment should always be targeted to the specific product, as it is an essential in proving compliance to the intended use. Regulatory compliance of submitted documentation is not less important, and it greatly impacts on change control and implementation of new productive technologies.

Risk analysis (RA) is the tool introduced in 2005 by ICH Q9 to evaluate all items which may impact on the design of productive processes and related equipment. There is no standard methodology to run risk analysis, the choice depends on the process/product under assessment. According to the guidance, RA can be performed both from the perspective of the product and the equipment, the latter being also considered a GMP risk analysis.

Design and choice of materials

Materials (and coating materials where relevant) used to build pharmaceutical equipment should be completely inert. Pharmaceutical equipment must comply with the EC Directive on Machinery 2006/42/EC and DIN EN ISO 14159. The ECA guidance discusses material selection (plastics or stainless steel); hygienic system design is also addressed by many different guidelines, e.g. those published by the European Hygienic Engineering and Design Group (EHEDG). An important item to consider is service life considerations for the materials used (EHEDG Document 32), as well as their chemical-physical characteristics and materials pairing.

Particularly critical are process contact surfaces, as they may impact product quality. Establishment of specific requirements is thus needed. The guidance focuses its attention on austenitic stainless steels (i.e. CrNiMo steels 1.4404 and 1.4435). The main elements to be assessed are the risk of corrosion, the risk of contamination of the product or process medium and the cleanability of the metallic surface. Topography, morphology and energy level are the main characteristics to be used to describe surfaces, addressing respectively the geometric shape, chemical composition and energy required per unit area to increase the size of the surface. The guidance provides a detailed discussion of all different aspects of surface treatment methods, and the hygienic design of open and closed equipment. Other sections discuss the optimal design of pipework and fittings, connections, welding and seam control. Detailed information is also provided on equipment of electrical engineering, measurement and control technology, as well as the process control technology (PCT) measurement and control functions.

A highly critical area within a pharmaceutical facility are cleanrooms, for which the design of the equipment and the choice of materials is even more stringent. Elements to be considered include stability/statics as concerns dynamic loads, smoothness of the floor, tightness of external façades and of enclosing surfaces of cleanrooms. Smooth nonporous surfaces are required, together with avoidance of molecular contamination, resistance to the intended cleaning or disinfection agents and the cleaning procedure, simple and tight integration of various fittings, efficient and rapid implementation of subsequent functional and technical changes. The ECA guidance document goes deeper into relevant requirements for all elements that are part of the design of a compliant cleanroom.

Documentation and automation

User requirement specifications (URS) are the key document to demonstrate equipment is fit for the intended use, as stated by GMP Annex 15 (2015). The ECA guidance suggests translating the URS in a technical version to be submitted to the potential equipment supplier, so to ensure the design would reflect product and quality-relevant requirements, being thus GMP compliant.

The management of documentation along the design life cycle of a new piece of equipment is also taken into consideration, with the different construction phases identified according to Good engineering practices (GEP): conceptual design, basic design/engineering, and detailed design/engineering.

The extensive use of data to monitor and document pharmaceutical manufacturing process represents another area of great attention. Requirements relevant to the design of validated computerised systems, data protection and data integrity must be kept in mind. ECA’s experts highlight the need to carefully delimitate areas subject to validation and their extention, particularly with reference to automated systems. Differences between qualification and validation of automated systems are also addressed, including equipment that might either be defined as “computerised” or “automated” system. Regulatory reference for validation is GAMP 5, while qualification refers to Annex 15.


The FDA warns about the manufacture medicinal and non-pharmaceutical products on the same equipment

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

A Warning Letter, sent in September 2022 by the US FDA to a German company after an inspection, addresses the possibility to use the same equipment for the manufacturing of pharmaceutical and non-pharmaceutical products. The FDA reject this possibility, that is considered a significant violation of cGMP.

The letter addresses the lack of process validation for the manufacturing of over-the counter (OTC) drugs and of qualification documentation proving acceptance criteria were met and the process was under control. Deficiencies were reflected in the batch records missing important pieces of information. Aspects pertaining cleaning validation were also found critical.

The requests of the FDA

The Warning Letter asks the company to provide the FDA with a full qualification programme of the equipment and facility. This should include a detailed risk assessment for all medicinal products manufactured using shared equipment. Plans are also needed on how to separate the manufacturing areas for pharmaceutical and non-pharmaceutical productions.

Furthermore, the program for cleaning validation should be reviewed to include at least (but not limited to) drugs with higher toxicities or potencies, drugs of lower solubility in their cleaning solvents and that may result difficult to clean. Maximum holding times before cleaning and swabbing locations for areas that are most difficult to clean should be also provided. A retrospective assessment of the cleaning process has to be included in the required CAPA plan; change management for the introduction of new manufacturing equipment or a new product should be also discussed.

The FDA also addressed many other violations, such as the lack of robust laboratory controls, identity testing of incoming raw materials including active ingredients (APIs), and the inability to demonstrate the respect of minimum USP monograph specifications and appropriate microbial limits for drug manufacturing. Management and controls on data integrity were also found deficient.

The European perspective

In the EU, the possibility to use the same equipment and premises for the manufacturing of both pharmaceutical and non-pharmaceutical products can be referred to the provisions set forth by Chapter 3 (Premises and Equipment) of the EU GMPs.

The document clearly states that the “premises and equipment must be located, designed, constructed, adapted and maintained to suit the operations to be carried out. Their layout and design must aim to minimise the risk of errors and permit effective cleaning and maintenance in order to avoid cross-contamination”.

The application of Quality Risk Management principles is used to assess the specific risk of cross-contamination and the consequent measures to be put in place. Dedicated premises and equipment may be needed in some cases, especially if the risk cannot be adequately controlled by operational and/or technical measures, the product has an unfavourable toxicological profile, or relevant residue limits cannot be satisfactorily determined by a validated analytical method. Attention should also be paid to the positioning of equipment and materials, so to avoid confusion between different medicinal products and their components, and to guarantee the correct execution of process controls. Particular provisions are needed in the case dusty materials are used, also with respect to cleaning validation.

All cleaning procedures should be available in written form, designed to allow for an easy and thorough cleaning (including drains, pipework, light fittings, ventilation points and other services). In the case of exposed materials, the interior surfaces of the premises should be smooth and easy to clean and disinfect.

All documentation needed to support the above mention requirements should be prepared according to Chapter 4 (Documentation) of the European GMPs.

EMA’s Guideline on shared facilities

The European Medicines Agency (EMA) published in 2014 a guideline on setting health based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities.

Threshold values expressed in terms of Permitted Daily Exposure (PDE) or Threshold of Toxicological Concern (TTC) are the key parameters to be used to run the risk assessment. The so determined threshold levels for APIs can also be used to justify carry over limits used in cleaning validation. EMA’s guideline discusses how to address the determination of the PDE, also with respect to specific types of active substances (e.g. genotoxic, of highly sensitising potential, etc.)

The WHO guidelines

The World Health Organisation released in 2011 its GMP guideline Annex 6 (TRS 961) on the manufacturing of sterile pharmaceutical products. Clean areas are the location of choice for such productions. High-risk operative areas for aseptic manufacturing are classified in Grade A, with Grade B representing their background zones. Grade C and D areas are reserved to less critical steps of the production process.

A frequent and thorough sanitation is important, coupled with disinfection with more than one biocide and/or a sporicidal agent, as appropriate. The effectiveness of the cleaning procedure should be closely monitored to exclude the presence of contaminants, both in the form of vital and not vital particulate.

The guideline specifically mentions the case of preparations containing live microorganisms (such as vaccines), that can be prepared in multiuser facilities only if the manufacturer can demonstrate and validate effective containment and decontamination of the live microorganisms. To transport materials, the conveyor belt should be continuously sterilised as a requirement to pass through a partition between a Grade A/B and a processing area of lower air cleanliness.

A “Comparison of EU GMP Guidelines with WHO Guidelines” was published by the German Federal Ministry for Economic Cooperation and Development (BMZ) to support the understanding of differences between the two approaches, and with a special emphasis to the alleged higher costs of implementation and compliance to EU GMPs.

Analysing the requirements relative to premises and equipment, they aim to guarantee the suitability of rooms to the intended tasks, minimise the risk of failure and cross-contamination and ensure easy cleaning and maintenance. According to the BMZ, EU’s and WHO’s requirements are the same, even if the WHO guideline is more detailed in some aspects (to this instance, the BMZ document was published prior to the release of the new Annex 1 to the GMPs). The theme of equipment is also discussed in other WHO guidelines, i.e. the “WHO good manufacturing practices: starting materials” and the WHO guidelines on transfer of technology in pharmaceutical manufacturing.

Cleaning and sanitation should be addressed according to the provisions set forth by the ISO 14644 family of technical standards. Cleaning validation is also treated in Appendix 3 of the WHO TRS 937 Annex 4. Cleaning validation should be used as the main tool to ensure the removal to pre-established levels of all residues of an API of a product manufactured in any equipment with direct contact to the surface, so that the next product manufactured using the same apparatus would be not cross-contaminated.

According to the BMZ, indications on qualification, process validation and cleaning validation contained in Annex 15 of EU GMPs (paragraph 6) should be integrated with the contents of the ICH Q2 guideline. The only two points of the EU GMPs not covered by the WHO’s guide refer to the allowance that toxic or hazardous substances can be substituted under special conditions for the validation process and the indication that “Test until clean” is not considered an appropriate alternative to cleaning validation.


EMA’s consultation on draft Q&As on remote certification of batches by QP

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

The last two years saw the implementation of a high degree of regulatory flexibility as a mean to respond to the many challenges posed by the travel bans consequent to the pandemic. After this “experimental” phase, regulatory authorities are now considering the possibility to allow the routine implementation of some remote procedures in the field of pharmaceutical production.

It is the case of the remote certification/confirmation of batches by the Qualified Person (QP): after the publication of a draft guideline in the form of Q&As (EMA/INS/169000/2022), the European Medicines Agency (EMA) has launched a short public consultation which will remain open up to 13 June 2022. Comments may be sent by email.

The guideline offers EMA’s point of view on the requirements for the physical attendance at the authorised manufacturing site applying to QPs in order to routinely run the remote certification of batches, outside emergency situations. The document has been drafted by the GMDP Inspectors Working Group; it is composed of four questions and their relative answers and it addresses some considerations arising from the experience gained on the application of the guidelines for human and veterinary medicines issued during the pandemic. These last ones were elaborated in cooperation between the European Commission, the Coordination group for Mutual recognition and Decentralised procedures – human (“CMDh”), the Inspectors Working Group, the Coordination group for Mutual recognition and Decentralised procedures – veterinary (“CMDv”) and EMA.

The Agency also warns that the contents proposed by new Q&As’ guideline may be subject to any other interpretation by the European Court of Justice, which is the ultimate responsible for the interpretation of the EU legislation.

The contents of the Q&As

The routine remote certification or confirmation of batches may in future apply to the activities carried out by the QPs within the EU and European Economic Area (EEA), with reference to manufactured or imported human and veterinary medicinal products and investigational medicinal products.

The first answer clarifies that it could be possible for the QP to routinely run remote batch certification or confirmation only if this type of practice is accepted by the relevant national competent authority (NCA) of the member state where the authorised site is located. To this instance, it should be noted that some NCAs may request some specific requirements to authorise the routine remote certification procedure, for example with reference to the location of the QPs.

Should the remote certification be allowed on a routine basis, specific requirements should be met in order to validate this practice, starting from its full compliance to the EU legislation and EU GMP guidelines.

The answer to question 2 specifies that all activities should take place in an EU/EEA country, and that the time spent by the QP at the authorised site should be commensurate with the risks related to the processes” hereby taking place. To this instance, it is of paramount importance the ability to demonstrate that the QP acting from remote has maintained full knowledge of the products, manufacturing processes and pharmaceutical quality system (PQS) involved in the remote certification/confirmation of batches. That also means that the QP should be highly reliant on the PQS of the authorised site, and this would be only possible by spending an adequate time on-site to verify the adequacy of the PQS with respect to the processes of interest. The pharmaceutical quality system should also include details of all the procedures used for the routine remote certification/confirmation of batches. The possible use of this type of remote procedure by the QP should be also clearly mentioned in the technical agreement governing the relationship between the authorisation holder and the QP, which should also specify all cases requiring the presence on-site of the QP. A robust IT infrastructure should be in place to guarantee the remote access of the QP to all the relevant documentation in the electronic format needed to achieve bath certification/confirmation, according to the provisions described in Annex 16 to the GMPs (Certification by a Qualified Person and Batch Release). To this instance, presence on-site should be always considered to solve issues that cannot properly be addressed from remote. The demonstration of the presence on-site of the QP falls under the responsibility of the Manufacturing/Importers Authorisation (MIA) holders.

These are also responsible to make available to the QPs all the hardware and software needed to guarantee the remote access to the relevant documentation (e.g. manufacturing executions systems, electronic batch records system, laboratory information systems etc.) as well as batch registers. All IT systems used for remote batch release should comply with the requirements of Annex 11 to the GMP (Computerised Systems).

On the same basis, it should be possible for NCAs to contemporaneously access for inspection all documentation and batch registers involved in routine remote certification/confirmation at the authorised site of batch release. MIA holders should also guarantee the QP is the only allowed person to access the batch certification/confirmation function and batch register, that the transferred data are complete and unchanged, and that an adequate system for electronic signatures is in place.

Question 3 simply clarifies that some members states may have some specific requirements about the country of residence of the QP, for example it should be the same where the authorised site involved in the remote certification procedure is located.

The last question discusses technical requirements linked to IT-security and data integrity for remote access, a type of procedure presenting a higher intrinsic risk in comparison to the same activities carried on-site. Here again, the main reference is Annex 11; all equipment and software used for remote certification of batches should always reflect the current technological developments.

Among the suggestions made by the Q&A draft guideline is the precise identification of all hardware transferred off-site to the QP, that should be inventoried and kept updated. Hard disks should be encrypted, and ports not required, disabled.

Attention should also be paid to the configuration of any virtual private network (VPN) used by the QP to improve the security of the connection to the IT infrastructure of the authorised site and to prevent unauthorised accesses. Authentication should be based on recognised industry standards (e.g. two-factor or multifactor authentication, with automatic date of expiry). The transfer of data should be secured by strong transport encryption protocols; assignment of individual privileges and technical controls falls under the responsibility of the MIA holder


PIC/S Annual Report 2021

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

The Annual Report of the Pharmaceutical Inspection Co-operation Scheme (PIC/S) resumes the many activities and results achieved in 2021, despite the ongoing pandemic that required remote coordination and on-line virtual meetings. To this regard, a written procedure has been used to manage important decisions. PIC/S also supported the harmonisation of the distant assessment procedures used by the various regulatory authorities to run GMP inspections during the pandemic period.

The non-binding co-operative arrangement between international regulatory authorities aims to implement harmonised GMP standards and quality systems in support to harmonised inspection procedures. PIC/S’ new strategic plan for 2023-2027 will be presented at the PIC/S 50th anniversary in 2022. The PIC/S Committee has elected Paul Gustafson (Canada/ROEB) as the new Chairperson for the period 2022-2023; he takes the place of Anne Hayes (Ireland/HPRA).

New memberships and re-assessments

Last year saw the entry into the PIC/S scheme of the Brasilian Agência Nacional de Vigilância Sanitária (ANVISA), one of the main regulators of South America, representing the largest market for medicinal products for this geographic area. ANVISA is the 54th member of PIC/S.

Five other membership applications continued the process of assessment. These include the application of Armenia’s Scientific Center of Drug and Medical Technologies Expertise (SCDMTE), that was requested to update its documentation; the preliminary report should be issued soon.

The Bulgarian Drug Agency (BDA) will benefit of a partial assessment of its application, due to the fact the agency already went through an audit under the EMA Joint Audit Programme (JAP) whose report was shared with PIC/S. Health Canada will also collaborate to this assessment under a MRA procedure.

The Jordan Food and Drug Administration (JFDA) also filed a membership application, as well as another regulator from Africa, the Saudi Food & Drug Authority (SFDA), whose preliminary report is soon expected.

Particularly complex is the case of the application by several Competent Authorities of the Russian Federation that jointly submitted a complete membership application in December2020. A larger team, consisting of a Rapporteur and several Co-Rapporteurs, shall be nominated to better manage the procedure. The involved Russian authorities are the Ministry of Industry and Trade of the Russian Federation (Minpromtorg Russia), the Federal Service for Surveillance in Healthcare (Roszdravnadzor), including the “Information and Methodological Center for Expertise, Accounting and Analysis of Circulation of Medical Products” (FGBU “IMCEUAOSMP” of Roszdravnadzor),the Federal “State Institute of Drugs and Good Practices” (FSI “SID & GP”), and the Federal “Scientific Center for Examination of Medical Devices” of the Ministry of Health of the Russian Federation (FSBI ”SCEMD”).

Among authorities undergoing the pre-accession procedure is the Chinese regulatory agency National Medical Products Administration (NMPA), whose application will be assessed by Jacques Morenas (France/ANSM) as Rapporteur and Raphael Yeung (Hong Kong SAR, China/PPBHK) as Co-Rapporteur.

Reviewing of the pre-accession application is also ongoing for the Analytical Expertise Center (AEC) of the Ministry of Health of Azerbaijan, the Bangladesh’s Directorate General of Drug Administration (DGDA, this 2-year timeframe for the pre-accession expired in February 2021, and a new application was required) and the Drug Regulatory Authority of Pakistan (DRAP), that was invited to apply for membership subject to the implementation of the PIC/S GMP Guide.

PIC/S also run a Joint Reassessment Programme (JRP) in parallel with the EU’s JAP to re-evaluate its members for equivalence on a regular basis. In 2021 the JRP included the reassessment of regulatory authorities from Indonesia (NADFC), New Zealand (Medsafe), and South Africa (SAHPRA).

PIC/S also established new contacts in 2021 with other non-member authorities, including Cameroon’s Laboratoire National de Contrôle de Qualité des Médicaments et d’ Expertise, China’s Institute of Veterinary Drug Control, Cuba’s Centro para el Control Estatal de Medicamentos, Equipos y Dispositivos Médicos (CECMED), and Montenegro’s Institute for Medicines and Medical Devices.

New guidances and revisions of existing ones

Among the new guidances adopted in 2021 are the Annex 2A for the Manufacture of ATMP for Human Use and Annex 2B for the Manufacture of Biological Medicinal Substances and Products for Human Use, that entered into force on 1 May 2021 (PE 009-15). The documents were finalised by the PIC/S Working Group on the revision of Annex 2 of the PIC/S GMP Guide.

The Working Group on Data Integrity issued two other guidance documents that entered into force on 1 July 2021, the Guidance on Good Practices for Data Management and Integrity in Regulated GMP/GDP Environments (PI 041-1) and a restricted Aide Memoire on inspection of data management and integrity (PI 049).

PIC/S also issued the Good Practice Guidelines for Blood Establishments and Hospital Blood Banks (PE 005) and the related Aide Memoire to Inspections of Blood Establishments and Plasma Warehouses (PI 008), that entered into force on 1 June 2021. The dedicated Working Group will now address the revision of PI 019 (PIC/S Site Master File for Source Plasma Establishments) and PI 020 (PIC/S Site Master File for Plasma Warehouses).

PIC/S and EMA’s joint Working Group on Annex 1 reviewed the comments received to the second public consultation and drafted the final version of the Annex.

The Working Group on Harmonisation of the Classification of Deficiencies is finalising the revision of the PIC/S SOP on Inspection Report Format (PI 013-3) in order to align it with the abovementioned PI 040-1. The Working Group on Controlling Cross-Contamination in Shared Facilities is as well finalising the revision of its Guidance on Cross-Contamination in Shared Facilities (PI 043-1).

PIC/S is also working to harmonise its GMP Guide and Annexes to the rules established by the European Union, in collaboration with EMA through the PIC/S-EMA Joint Consultation Procedure. Many chapters and annexes of the PIC/S-EU GMP Guide were considered during 2021, including Chapter 1 (Pharmaceutical Quality System), Chapter 4 (Documentation) and Annex 11 (Computerised Systems), Annexes 4 and 5 (Veterinary Medicinal Products), Annex 13 (Investigational Medicinal Products), Annex 16 (Certification by an Authorised Person & Batch Release), and Annex21 (GMP Obligations for Importation to the EU).

Virtual training in the pandemic period

Four virtual training events were organised in 2021, among which a PIC/S webinar for inspectors on ICH Q12 (Pharmaceutical Product Lifecycle Management) that was attended by around350 participants from 50 agencies and 44 different jurisdictions.

The webinar on Distant assessment/Remote Virtual Inspection co-organised with the EU Commission Expert Sub-Group on Inspections in the Blood, Tissues and Cells Sectors (IES) was attended by around 325 participants.

The 2021 PIC/S annual seminar was hosted by the Ministry Food and Drug Safety (MFDS) of the Republic of Korea, and saw the participation of 315 inspectors from 54 authorities.

The 2nd meeting of the PIC/S Expert Circle on Controlling Cross-Contamination in Shared Facilities (CCCISF) was virtually hosted and was attended by 375 participants.

Last year saw also the provision of new harmonised and standardised GMP training activities for inspectors under the PIC/S Inspectorates’ Academy (PIA) initiative, a web-based educational centre also involved in setting up a standardised qualification process of inspectors.


FAT and SAT, a critical step for the introduction of new equipment

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

There are two key moments to be faced to introduce a new piece of equipment in a pharmaceutical plant: a factory acceptance testing (FAT), usually performed by its manufacturer to verify the new equipment meets its intended purpose, prior to approve it for delivery and once arrived at its final destination and installed, a site acceptance testing (SAT) run by the purchasing company and is part of the commissioning activity.

According to an article published in Outsourced Pharma, the commissioning of a new piece of equipment poses many challenges, and criticalities needs to be considered both from the business and regulatory point of view. Pharmaceutical plants are very complex and often customised upon the specific business needs, and the delivery of a new equipment requires the interaction of many different parties, both internal and external to the purchasing company. FAT, SAT and commissioning activities require a careful planning and detailed responsibilities for all participating parties to be included within the Commissioning and Qualification Plan (CQV plan). A possible responsibility matrix is suggested by the authors to provide clarity and ensures ownership of activities.

FAT, assessing the equipment at the manufacturer site

FAT and SAT testing involve the visual inspection of the equipment and the verification of its static and/or dynamic functioning, in order to assess the actual correspondence to the user requirement specifications (URS). While FATs are usually based on simulations of the equipment’s operating environment, SAT testing occurs at the final site after installation, thus it reflects the real operating conditions and environment in order to support qualification.

There are many different elements to be considered during FAT testing, including for example verification of the existing site drainage, piping, or room dimensions, or the position of the handle for accessibility, as well as software design specification, interface, and device integration.

The FAT exercise is always highly recommended, as it is essential to solve in advance (before shipment to the final destination) any error or malfunctioning of the equipment, that otherwise might occur at the purchasing company’s site. This results in the optimisation of the delivery and commissioning process, with important savings in terms of both time and costs for the purchasing company. To ensure for the transparency of FAT testing, the entire procedure (that requires usually 1-3 days, depending on the complexity of the equipment to be verified) is usually performed in the presence of a third party inspector and customer representative.

A comprehensive set of documentation should be always available to support FAT, including URS, drawings, checklists and procedures, calibrations and certifications, data sheets, references, etc. Raw data acquired during FAT are transmitted to the customer for analysis and validation. FAT should take into consideration all aspects relevant to the evaluation of the safety and functionality of the equipment and its compliance to URS, GMPs and data integrity. To this regard, it is also important for the engineering team called to run the new equipment at its final location to learn and share knowledge with the manufacturer along the entire commissioning process, so to increase the first-hand direct experience. According to the article, this is also critical to authorise the shipment of the equipment to the final destination, a step that should always be performed by an authorised, trained, and approved subject matter expert.

 SAT acceptance testing

All criticalities emerged during the FAT exercise are then checked again at the final site, after installation and verification; additional test cases may also be added to the SAT protocol to check for potential failure modes. SAT testing is performed once all connections between the new equipment and other machines/softwares are in place, under the real operating parameters, and may be witnessed by a representative of the equipment’s manufacturer.

Results from SATs may thus differ from those obtained from the FAT previously run by the manufacturer. From the regulatory point of view, SAT testing is a key element to demonstrate the compliance of the equipment to GMP requirements and to support the overall quality and safety of pharmaceutical productions. In this case too, many are the possible elements to be inspected and verified, including interlocks, ventilation, internal box pressure, electrical/hydraulic connections and safety systems, visual checks of components, training of the operators, etc.

A plan for each testing phase

FAT planning begins at the very moment of the purchasing company placing the order for the new equipment, and it has to reflect all URS to be checked for acceptability of the manufactured apparatus. This step in the design is critical and calls for a strict and positive communication between the manufacturer and its customers, a key point to take into consideration all elements that should enter the project.

All identified items and procedures to be challenged during FAT and SAT testing are usually addressed within the CQV plan, that connects the design phase to user requirements specifications and the other elements impacting the commissioning and qualification processes (i.e. system impact assessment, design specification, functional risk assessment, hardware / software specifications, Installation / Operational / Performance Qualification), including deviations and change management. The plan specific to SAT testing should include the scope, test specifications and logs, a test summary, the Commissioning report and the final Certificate of Acceptance.

Transparency and a robust statistical approach should represent main targets along the entire commissioning and validation procedure, that may be run with the assistance of external consultants. All activities that shall enter the regulatory dossiers should always be justified and documented, also under the perspective of data integrity. The Outsourced Pharma’s article also suggests paying a particular attention to controls on data provided by the manufacturer in the case a risk-based leveraging is applied.


The new PIC/S guideline on data integrity

, , , , , , , , , , , , , , ,

by Giuliana Miglierini

The long waited new PIC/S guideline PI 041-1 has been finally released on July 1st; the document defines the “Good Practices for Data Management and Data Integrity in regulated GMP/GDP Environments”, and it represents the final evolution of the debate, after the 2nd draft published in August 2016 and the 3rd one of November 2018.
While maintaining the previous structure, comprehensive of 14 chapters for a total of 63 pages, some modifications occurred in the subchapters. The Pharmaceutical Inspection Co-operation Scheme (PIC/S) groups inspectors from more than 50 countries. PIC/S guidelines are specifically aimed to support the inspectors’ work, providing a harmonised approach to GMP/GDP inspections to manufacturing sites for APIs and medicinal products.

Data integrity is a fundamental aspect of inspections
The effectiveness of these inspection processes is determined by the reliability of the evidence provided to the inspector and ultimately the integrity of the underlying data. It is critical to the inspection process that inspectors can determine and fully rely on the accuracy and completeness of evidence and records presented to them”, states the Guideline’s Introduction.
This is even more true after the transformation impressed by the pandemic, resulting in a strong acceleration towards digitalisation of all activities. The huge amount of data produced every day during all aspects of the manufacturing and distribution of pharmaceutical products needs robust data management practices to be in place in order to provide adequate data policy, documentation, quality and security. According to the Guideline, all practices used by a manufacturer “should ensure that data is attributable, legible, contemporaneous, original, accurate, complete, consistent, enduring, and available”. This means also that the same principles outlined by PIC/S may be used also to improve the quality of data used to prepare the registration dossier and to define control strategies and specifications for the API and drug product.
The guidance applies to on-site assessments, which are normally required for data verification and evidence of operational compliance with procedures. In the case of remote (desktop) inspections, as occurred for example during the pandemic period, its impact will be limited to an assessment of data governance systems. PIC/S also highlights that the guideline “is not intended to provide specific guidance for ‘for-cause’ inspections following detection of significant data integrity vulnerabilities where forensic expertise may be required”.

The impact on the entire PQS
PIC/S defines data Integrity as “the degree to which data are complete, consistent, accurate, trustworthy, and reliable and that these characteristics of the data are maintained throughout the data life cycle”.
This means that the principles expressed by the guideline should be considered with respect to the entire Pharmaceutical Quality System (and to the Quality System according to GDPs), both for electronic, paper-based and hybrid systems for data production, and fall under the full responsibility of the manufacturer or the distributor undergoing the inspection.
The new guidance will represent the baseline for inspectors to plan risk-based inspections relative to good data management practices and risk-based control strategies for data, and will help the industry to prepare to meet the expected quality for data integrity, providing guidance on the interpretation of existing GMP/GDP requirements relating to current industry data management practices without imposition of additional regulatory burden. PIC/S highlights that the new guidance is not mandatory or enforceable under the law, thus each manufacturer or distributor is free to voluntarily choose to follow its indications.

Principles for data governance
The establishment of a data governance system, even if not mandatory, according to PIC/S would support the company to coherently define its data integrity risk management activities. All passages typical of the data lifecycle should be considered, including generation, processing, reporting, checking, decision-making, storage and elimination of data at the end of the retention period.
“Data relating to a product or process may cross various boundaries within the lifecycle. This may include data transfer between paper-based and computerised systems, or between different organisational boundaries; both internal (e.g. between production, QC and QA) and external (e.g. between service providers or contract givers and acceptors)”, warns PIC/S.
Chapter 7 specifically discusses the Good document management practices (GdocPs) expected to be applied, that can be summarised by the acronyms ALCOA (Attributable, Legible, Contemporaneous, Original, Accurate) and ALCOA+ (the previous plus Complete, Consistent, Enduring and Available).
Data governance systems should take into consideration data ownership and the design, operation and monitoring of processes and systems. Controls should include both operational (e.g. procedures, training, routine, periodic surveillance, etc) and technical features (e,g, computerised system validation, qualification and control, automation or other technologies to provide control of data). The entire organisation should commit to the adoption of the new data culture, under a top-down approach starting from the Senior management and with evidence provided of communication of expectations to personnel at all levels. Sections 6 of the guideline provides some examples in this direction. The ICH Q9 principles on quality risk management should be used to guide the implementation of data governance systems and risk minimisation activities, under the responsibility of the Senior management. Efforts in this direction should always be commensurate with the risk to product quality, and balanced with other quality resource demands. In particular, the risk evaluation should consider the criticality of data and their associated risk; the guideline provides an outline of how to approach the evaluation of both these factors (paragraphs 5.4 and 5.5). Indication is also provided on how to assess the effectiveness of data integrity control measures (par. 5.6) during internal audit or other periodic review processes.
Chapter 8 addresses the specific issues to be considered with respect to data integrity for paperbased systems, while those related to computerised systems are discussed in Chapter 9. As many activities typical of the pharmaceutical lifecycle are normally outsourced to contract development & manufacturing organisations (i.e. API manufacturing, formulation, analytical controls, distribution, etc.), PIC/S also considered in the guideline the aspects impacting on the data integrity of the overall supply chain (Chapt. 10). “Initial and periodic re-qualification of supply chain partners and outsourced activities should include consideration of data integrity risks and appropriate control measures”, says the guideline.

The regulatory impact of data integrity
Recent years have seen the issuance of many deficiency letters due to problems with data integrity,. Approx. half (42, 49%) of the total 85 GMP warning letters issued by the FDA in 2018, for example, included a data integrity component.
The new PIC/S guideline provides a detailed cross-reference table linking requirements for data integrity to those referring to the other guidelines on GMPs/GDPs for medicinal products (Chapter 11). Guidance on the classification of deficiencies is also included in the document, in order to support consistency in reporting and classification of data integrity deficiencies. PIC/S notes that this part of the guidance “is not intended to affect the inspecting authority’s ability to act according to its internal policies or national regulatory frameworks”.
Deficiencies may refer to a significant risk for human or animal health, may be the result of fraud, misrepresentation or falsification of products or data, or of a bad practice, or may represent an opportunity for failure (without evidence of actual failure) due to absence of the required data control measures. They are classified according to their impact, as critical, major and other deficiencies.
Chapter 12 provides insight on how to plan for the remediation of data integrity failures, starting from the attention required to solve immediate issues and their associated risks. The guideline lists the elements to be included in the comprehensive investigation to be put in place by the manufacturer, as well as the corrective and preventive actions (CAPA) taken to address the data integrity vulnerabilities. A Glossary is also provided at the end of the guideline.