FDA Archives - European Industrial Pharmacists Group (EIPG)

A new member within EIPG


The European Industrial Pharmacists Group (EIPG) is pleased to announce the Romanian Association (AFFI) as its newest member following the annual General Assembly of EIPG in Rome (20th-21st April 2024). Commenting on the continued growth of EIPG’s membership, EIPG President Read more

The EU Parliament voted its position on the Unitary SPC


by Giuliana Miglierini The intersecting pathways of revision of the pharmaceutical and intellectual property legislations recently marked the adoption of the EU Parliament’s position on the new unitary Supplementary Protection Certificate (SPC) system, parallel to the recast of the current Read more

Reform of pharma legislation: the debate on regulatory data protection


by Giuliana Miglierini As the definition of the final contents of many new pieces of the overall revision of the pharmaceutical legislation is approaching, many voices commented the possible impact the new scheme for regulatory data protection (RDP) may have Read more


A concept paper on the revision of Annex 11

, , , , , , , , , , , , , , , , , , , , , , ,

This concept paper addresses the need to update Annex 11, Computerised Systems, of the Good Manufacturing Practice (GMP) guideline. Annex 11 is common to the member states of the European Union (EU)/European Economic Area (EEA) as well as to the participating authorities of the Pharmaceutical Inspection Co-operation Scheme (PIC/S). The current version was issued in 2011 and does not give sufficient guidance within a number of areas. Since then, there has been extensive progress in the use of new technologies.

Reasons for the revision of Annex 11 include but are not limited to the following (in non-prioritised order):

  • The document should be updated to replace relevant parts of the Q&A on Annex 11 and the Q&A on Data Integrity on the EMA GMP website
  • An update of the document with regulatory expectations to ‘digital transformation’ and similar newer concepts will be considered
  • References should be made to ICH Q9
  • The meaning of the term ‘validation’ (and ‘qualification’), needs to be clarified
  • Guidelines should be included for classification of critical data and critical systems
  • Important expectations to backup processes are missing e.g. to what is covered by a backup, what types of backups are made, how often backups are made, how long backups are, retained, which media is used for backups, or where backups are kept
  • The concept and purpose of audit trail review is inadequately described
  • Guidelines for acceptable frequency of audit trail review should be provided
  • There is an urgent need for regulatory guidance and expectations to the use of artificial intelligence (AI) and machine learning (ML) models in critical GMP applications as industry is already implementing this technology
  • FDA has released a draft guidance on Computer Software Assurance for Production and Quality System Software (CSA). This guidance and any implication will be considered with regards to aspects of potential regulatory relevance for GMP Annex 11

The current Annex 11 does not give sufficient guidance within a number of areas already covered, and other areas, which are becoming increasingly important to GMP, are not covered at all. The revised text will expand the guidance given in the document and embrace the application of new technologies which have gained momentum since the release of the existing version.

If possible, the revised document will include guidelines for acceptance of AI/ML algorithms used in critical GMP applications. This is an area where regulatory guidance is highly needed as this is not covered by any existing regulatory guidance in the pharmaceutical industry and as pharma companies are already implementing such algorithms.

The draft concept paper approved by EMA GMP/GDP IWG (October 2022) and by PIC/S (November 2022) and released for a two-months consultation until 16 January 2023.


The FDA warns about the manufacture medicinal and non-pharmaceutical products on the same equipment

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

A Warning Letter, sent in September 2022 by the US FDA to a German company after an inspection, addresses the possibility to use the same equipment for the manufacturing of pharmaceutical and non-pharmaceutical products. The FDA reject this possibility, that is considered a significant violation of cGMP.

The letter addresses the lack of process validation for the manufacturing of over-the counter (OTC) drugs and of qualification documentation proving acceptance criteria were met and the process was under control. Deficiencies were reflected in the batch records missing important pieces of information. Aspects pertaining cleaning validation were also found critical.

The requests of the FDA

The Warning Letter asks the company to provide the FDA with a full qualification programme of the equipment and facility. This should include a detailed risk assessment for all medicinal products manufactured using shared equipment. Plans are also needed on how to separate the manufacturing areas for pharmaceutical and non-pharmaceutical productions.

Furthermore, the program for cleaning validation should be reviewed to include at least (but not limited to) drugs with higher toxicities or potencies, drugs of lower solubility in their cleaning solvents and that may result difficult to clean. Maximum holding times before cleaning and swabbing locations for areas that are most difficult to clean should be also provided. A retrospective assessment of the cleaning process has to be included in the required CAPA plan; change management for the introduction of new manufacturing equipment or a new product should be also discussed.

The FDA also addressed many other violations, such as the lack of robust laboratory controls, identity testing of incoming raw materials including active ingredients (APIs), and the inability to demonstrate the respect of minimum USP monograph specifications and appropriate microbial limits for drug manufacturing. Management and controls on data integrity were also found deficient.

The European perspective

In the EU, the possibility to use the same equipment and premises for the manufacturing of both pharmaceutical and non-pharmaceutical products can be referred to the provisions set forth by Chapter 3 (Premises and Equipment) of the EU GMPs.

The document clearly states that the “premises and equipment must be located, designed, constructed, adapted and maintained to suit the operations to be carried out. Their layout and design must aim to minimise the risk of errors and permit effective cleaning and maintenance in order to avoid cross-contamination”.

The application of Quality Risk Management principles is used to assess the specific risk of cross-contamination and the consequent measures to be put in place. Dedicated premises and equipment may be needed in some cases, especially if the risk cannot be adequately controlled by operational and/or technical measures, the product has an unfavourable toxicological profile, or relevant residue limits cannot be satisfactorily determined by a validated analytical method. Attention should also be paid to the positioning of equipment and materials, so to avoid confusion between different medicinal products and their components, and to guarantee the correct execution of process controls. Particular provisions are needed in the case dusty materials are used, also with respect to cleaning validation.

All cleaning procedures should be available in written form, designed to allow for an easy and thorough cleaning (including drains, pipework, light fittings, ventilation points and other services). In the case of exposed materials, the interior surfaces of the premises should be smooth and easy to clean and disinfect.

All documentation needed to support the above mention requirements should be prepared according to Chapter 4 (Documentation) of the European GMPs.

EMA’s Guideline on shared facilities

The European Medicines Agency (EMA) published in 2014 a guideline on setting health based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities.

Threshold values expressed in terms of Permitted Daily Exposure (PDE) or Threshold of Toxicological Concern (TTC) are the key parameters to be used to run the risk assessment. The so determined threshold levels for APIs can also be used to justify carry over limits used in cleaning validation. EMA’s guideline discusses how to address the determination of the PDE, also with respect to specific types of active substances (e.g. genotoxic, of highly sensitising potential, etc.)

The WHO guidelines

The World Health Organisation released in 2011 its GMP guideline Annex 6 (TRS 961) on the manufacturing of sterile pharmaceutical products. Clean areas are the location of choice for such productions. High-risk operative areas for aseptic manufacturing are classified in Grade A, with Grade B representing their background zones. Grade C and D areas are reserved to less critical steps of the production process.

A frequent and thorough sanitation is important, coupled with disinfection with more than one biocide and/or a sporicidal agent, as appropriate. The effectiveness of the cleaning procedure should be closely monitored to exclude the presence of contaminants, both in the form of vital and not vital particulate.

The guideline specifically mentions the case of preparations containing live microorganisms (such as vaccines), that can be prepared in multiuser facilities only if the manufacturer can demonstrate and validate effective containment and decontamination of the live microorganisms. To transport materials, the conveyor belt should be continuously sterilised as a requirement to pass through a partition between a Grade A/B and a processing area of lower air cleanliness.

A “Comparison of EU GMP Guidelines with WHO Guidelines” was published by the German Federal Ministry for Economic Cooperation and Development (BMZ) to support the understanding of differences between the two approaches, and with a special emphasis to the alleged higher costs of implementation and compliance to EU GMPs.

Analysing the requirements relative to premises and equipment, they aim to guarantee the suitability of rooms to the intended tasks, minimise the risk of failure and cross-contamination and ensure easy cleaning and maintenance. According to the BMZ, EU’s and WHO’s requirements are the same, even if the WHO guideline is more detailed in some aspects (to this instance, the BMZ document was published prior to the release of the new Annex 1 to the GMPs). The theme of equipment is also discussed in other WHO guidelines, i.e. the “WHO good manufacturing practices: starting materials” and the WHO guidelines on transfer of technology in pharmaceutical manufacturing.

Cleaning and sanitation should be addressed according to the provisions set forth by the ISO 14644 family of technical standards. Cleaning validation is also treated in Appendix 3 of the WHO TRS 937 Annex 4. Cleaning validation should be used as the main tool to ensure the removal to pre-established levels of all residues of an API of a product manufactured in any equipment with direct contact to the surface, so that the next product manufactured using the same apparatus would be not cross-contaminated.

According to the BMZ, indications on qualification, process validation and cleaning validation contained in Annex 15 of EU GMPs (paragraph 6) should be integrated with the contents of the ICH Q2 guideline. The only two points of the EU GMPs not covered by the WHO’s guide refer to the allowance that toxic or hazardous substances can be substituted under special conditions for the validation process and the indication that “Test until clean” is not considered an appropriate alternative to cleaning validation.


Trends in Drug delivery and Formulation

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

According to the 2021 Global Drug Delivery & Formulation Report, signed by Kurt Sedo, Vice President Operations, PharmaCircle LLC and published in a three-part series on Drug Development & Delivery, the Covid-19 pandemic seems to have had little impact on the regulatory approvals of new dosage forms and formulations. A positive sign from the pharmaceutical ecosystem, considering the difficulty to maintain normal operative conditions, the issues with international supply chains and the many hurdles to regulatory activities posed by the emergency.

According to Kurt Sedo, products newly approved by the FDA and based on new chemical entities have been the less affected, as they reflect a larger benefit for patients. On the other hand, are generics, together with new dosage forms and new formulations. Simple dosage forms continue to represent the great part of new approvals, while biologics prevail in terms of NCEs for injection.

The FDA approved in 2021 a total of 31 new products under the Biologics Licence Application (BLA) procedure, slightly more than in the previous two years. The increase is mainly linked to the higher number of vaccines and cell and gene therapies, while approval of biologic medicines maintained stable.

Approval trends by category of product

A marked decrease characterised Abbreviated New Drug Approvals (ANDA) (627 in 2021, vs 903 in 2020 and 962 in 2019). New Drug Applications (NDA) also slightly decreased. Analysing this category by type of product, the decrement is marked for new molecular entities and new dosage forms, while an opposite trend can be observed for new active ingredients and new formulations/new manufacturers.

As for administration route, the report indicates a marked prevalence of injection in all geographic areas (US 55%, EU 36%, JP 59%); oral drugs also continue to be highly represented. The author warns about the difficulty to reliably interpret the figures for European and Japanese approvals, as “The European Medicines Agency (EMA) approvals relate only to specific classes of pharmaceutical products and don’t capture the full range of products. The Japanese Pharmaceutical Medical and Medical Devices Agency (PMDA) published approvals are hard to access and properly assess”.

Looking more in detail at the injection route of administration, intravenous injectable products remain the leading category (US 39%, EU 38%, JP 38%), followed by subcutaneous injection. Simple solutions with or without a dedicated delivery device were the most commonly approved injectable simple dosage forms in 2021. Tablets and capsules remained the favoured oral dosage forms, while granules and pellets are especially represented in paediatric formulations.

Small molecules are the more represented category of active ingredients (US 64%, EU 74%, JP 52%), followed by antibodies and peptides; this last category of API offer the advantage of a possible formulation as non-injectable dosage form.

A deeper insight on the main approvals

Part 2 of the series debates the main products approved in 2021. The trend hints to a higher interest towards products and technologies targeted to wider patient populations and more diverse applications. According to Sedo, mRNA and gene therapy platforms have decrease their appealing due to need of validation for applications different than vaccines in the first case and safety and durability concerns in the latter.

Skytrofa (Ascendis Pharma) is a pegylated form of the growth hormone lonapegsomatropin-tcgd for injection or subcutaneous administration, using the dedicated rechargeable and reusable auto-injector. The weekly administration is the main advantage, overruling the need of daily injections.

Invega Hafyera (Janssen Pharmaceuticals), containing paliperidone palmitate as the active ingredient, has been approved in the US to treat adult schizophrenia by intramuscular injection every 6 months. Despite the parent molecule has already lost its exclusivity, Kurt Sedo highlights the remarkable lifecycle management of the Invega family of products, which allowed Janssen to maintain significant revenues for almost 20 years.

Tyrvaya (Oyster Point Pharma) is indicated to treat dry eye using the nasal delivery route. The formulation containing varenicline is administered using the Aptar’s CPS Spray Pump, representing the first approval for this type of technology platform. The possibility to overcome issues in treating ocular conditions connected to the difficulty many patients may experience with the administration of classical ocular drops is the main point of innovation.

Acuvue Theravision (Johnson & Johnson Vision Care) are contact lenses firstly approved in Japan and containing ketotifen to treat allergic conjunctivitis. In this case too, the approach may be replicated to administer other types of drugs in the eye. Issues may be represented by the difficulty of patients in using contact lenses and the need to stabilise the active ingredient to prevent leaching.

Cabenuva Kit (ViiV Healthcare) contains the combination cabotegravir – rilpivirine to treat HIV infection. Firstly, approved in Canada, it is administered monthly by intramuscular injection. Long-acting formulations can prove interesting to overcome compliance issues which may result in serious consequences for patients, as already proved in the case of hepatitis.

The monoclonal antibody Susvimo (anibizumab; Genentech) is formulated as a refillable ocular implant to treat wet acute macular degeneration. After implantation, the intravitreal injections using the Port Delivery System (PDS) occur every 6 months.

Other relevant technologies mentioned among new 2021 approvals include the Medicago Virus Like Particles (VLP) technology, which uses tobacco-related plants as bioreactors to produce noninfectious VLP that mimic the target virus, and LICA technology (Ionis), based on Ligand Conjugated Antisense (LICA) to favour the interaction of ligands and their respective receptors.

The Denali Transport Vehicle (TV) platform uses specific antibodies, enzymes, oligonucleotides, or proteins to link to the transferrin receptor of the blood vessel wall in the brain, thus providing a way to pass the blood-brain barrier by endocytosis.

MedRing (Ligalli) is a smart vaginal insert containing a miniaturised liquid formulation drug container with pump, battery, antenna, electronics, and sensors to monitor various biometric parameters (e.g. glucose or ovulation status).

Q-Sphera (Midatech Pharma) provides a bioencapsulation process using a microfluidic device to obtain discrete droplets without use of surfactants, toxic solvents, biphasic mixtures, shear, or heat forces.

Products in the pipelines

Part 3 of the series addresses the expectations for new approvals of products still in the pipelines The trend shows a higher percentage of early-stage products (research and pre-clinical phases), which is attributed to the higher interest of investors towards new companies able to fill the pipelines with early stage projects. The impact of Covid-19 has proved to be more relevant on projects at the clinical stage.

Small molecules still represent the main focus of development (59% in 2021/22), even if a drop has been observed from values recorded in 2015/16 (66%). Biological products may pose issues due to their highly speculative nature, suggests the report, while oligonucleotide and RNA products still represent only the 2% of the total in the pipelines; a more mature technology are antibodies (12%).

Cancer continues to be the leading therapeutic area of development, followed by infectious diseases and drugs to treat the central nervous system. The report indicates a very high attrition rate for anti-infectives under development, while many anti-cancer therapeutics in the pipelines may be me-too products pursuing validated therapeutic mechanisms. As seen above, injectable formulations maintain the leading position also for products under development (52%), followed by oral formulations.


Revision of the CDMh’s Q&As document on nitrosamine impurities

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

The review process of medicinal products started in 2018 to assess the presence of nitrosamine impurities is still ongoing. The Coordination Group for Mutual Recognition and Decentralised Procedure (CMDh) last updated in December2021 its Questions & Answers document (Q&A) proving guidance on how to approach the revision procedure.

The US’s Food and Drug Administration (FDA) also updated its guidance on how to minimise the risks related to nitrosamine through formulation design changes. We summarise the latest news of the topic of nitrosamine impurities.

The CMDh’s update of the Q&A document

The CMDh Questions & Answers document (CMDh/400/2019, Rev.5) specifically refers to the implementation of the outcome of Art. 31 referral on angiotensin-II-receptor antagonists (sartans) containing a tetrazole group. According to the indications released in November 2020 by EMA’s human medicines committee (CHMP), these outcomes should now be aligned with those issued for other classes of medicines. This provision impacted on the allowed limits for nitrosamines, which are now applied to the finished products instead than to the active ingredient. The limits are determined on the basis of internationally agreed standards (ICH M7(R1)).

Companies are called to implement an appropriate control strategy to prevent or limit the presence of nitrosamine impurities as much as possible and to improve their manufacturing processes where necessary. A risk assessment should be run to evaluate the possible presence of N-nitrosamines in medicinal products, and tests carried out if appropriate.

Four different conditions (A-D) are set for the marketing authorisation (MA) of tetrazole sartans, with specific dates to be met for their fulfilment by marketing authorisation holders (MAHs). Revision 5 of the Q&As document specifically addresses conditions B and D.

Condition B asks the MAH to submit a step 2 response in the general “call for review”. To lift the condition on the risk assessment for the finished product, and provided no nitrosamine was detected in step 2 or levels are below 10% of acceptable intake (AI), submission of the step 2 response must now be followed by the submission of the outcome of the risk assessment. To this instance, the relevant template “Step 2 – No nitrosamine detected response template” should be used to fill a type IA C.I.11.a variation.

A further amendment to Condition B refers to nitrosamines being detected in step 2 above 10% AI. In this case, a variation application should be submitted as appropriate to support changes to the manufacturing process and the possible introduction of a limit in the specification of the finished product.

Condition D now specifies that it applies only to N-nitrosodimethylamine (NDMA) and N nitrosodiethylamine (NDEA) impurities. Thus, to lift the condition on the change of the finished product specification, and if the MAH wants to apply for omission from the specification, supporting data and risk assessments should be submitted via a type IB C.I.11.z variation referring only to these two impurities. Should any other nitrosamine impurity be potentially present, data should be submitted under separate variation (also grouping them together). Conditions A and C remain unchanged. The former refers to the three different possibilities for lifting the condition on the risk assessment for the active substance and with specific reference to the manufacturing process used to prepare it, the second to lifting the condition on the control strategy.

The guidance from the FDA

The US regulatory agency Food and Drug Administration (FDA) released in February 2021 the first revision of the “Guidance for Industry Control of Nitrosamine Impurities in Human Drugs”, establishing a three-step process to demonstrate the fulfilment of requirements.

The guideline widely discusses the structure of nitrosamine impurities and the possible root causes for their presence in medicinal products. While not binding for manufacturers, recommendations contained in the document should be applied in order to evaluate the risk level for the contamination of both active ingredients and finished products. This exercise should be run on the basis of a prioritisation taking into consideration the maximum daily dose, the duration of treatment, the therapeutic indication, and the number of patients treated.

The FDA provides also the acceptable intake limits for a set of different nitrosamine impurities (NDMA, NDEA, NMBA, NMPA, NIPEA, and NDIPA); the approach outlined in ICH M7(R1) should be used to determine the risk associated with other types of nitrosamines.

Manufacturers do not need to submit the results of the risk assessment to the FDA, the relevant documentation has to be made available just upon specific request.

The second step refers to products showing a risk for the presence of nitrosamine impurities. In this case, highly sensitive confirmatory testing is needed to confirm the presence of the impurities.

The implementation of all changes to the manufacturing process for the API or final product have then to be submitted to the FDA in the form of drug master file amendments and changes to approved applications.

The Agency also provides specific guidance for API manufacturers to optimise the route of manufacturing in order to prevent the possible formation of nitrosamine impurities. API manufacturers should participate to the risk assessment run by the MAH; this last exercise should include the evaluation of any pathway (including degradation) that may introduce nitrosamines during drug product manufacture or storage.

Additional points to be considered

A Communication issued in November 2021 by the FDA specifies the terms for the recommended completion dates of the above mentioned three steps and adds some additional points to be considered in the evaluations. MAHs should have already completed by 31st March 2021 all risk assessments, while there is time up to 1st October 2023 for confirmatory testing and reporting changes. According to the FDA, the time left is enough to include in the development of the mitigation strategies also new considerations on how formulation design may prove useful to control nitrosamine levels in drug products.

More in particular, manufacturers are asked to evaluate the presence of nitrosamine drug substance-related impurities (NDSRIs), that may be produced if nitrite impurities are present in excipients (at parts-per-million amounts) or may be generated during manufacturing or shelf-life storage. Should NDSRIs be present, FDA recommends the mitigation strategy should include a supplier qualification program that takes into account potential nitrite impurities across excipient suppliers and excipient lots.

Formulation design is another possible approach to solve the issue. This may use, for example, common antioxidants – such as ascorbic acid (vitamin C) or alpha-tocopherol (vitamin E) – that according to the scientific literature inhibit the formation of nitrosamines in vivo. The kinetic of the reaction leading to the formation of nitrosamine impurities may be also addressed by using a neutral or basic pH for formulation, to avoid acidic conditions which favours the side reaction.

Formulation changes may be submitted to the FDA through supplements or amendments to the applications, also following a preliminary meeting with the Agency to better discuss the approach to be used. Should this be the case, applicants or manufacturers are asked to prepare a comprehensive meeting package with the appropriate regulatory and scientific data on the selected approach to be submitted to the FDA in advance of the meeting.


Automation of aseptic manufacturing

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giliana Miglierini

The pharmaceutical industry is often the last industrial sector to implement many new manufacturing and methodological procedures. One typical example is Lean production, those concepts were developed in the automotive industry well before their adoption in the pharmaceutical field. The same may also apply to automation: it appears time is now mature to see an increasing role of automated operations in the critical field of aseptic manufacturing, suggests an article by Jennifer Markarian on PharmTech.com.

The main added value of automation is represented by the possibility to greatly reduce the risk of contamination associated to the presence of human operators in cleanrooms. A goal of high significance for the production of biotech, advanced therapies, which are typically parenterally administered. Automation is already taking place in many downstream processes, for example for fill/finish operations, packaging or warehouse management.

The advantages of the automation of aseptic processes

The biggest challenges engineers face when designing isolated fill lines are fitting the design into a small, enclosed space; achieving good operator ergonomics; and ensuring all systems and penetrations are leak-tight and properly designed for cleanability and [hydrogen peroxide] sterilization,” said Joe Hoff, CEO of robotics manufacturer AST, interviewed by Jennifer Markarian.

The great attention to the development of the Contamination Control Strategy (CCS) – which represents the core of sterile manufacturing, as indicated by the new Annex 1 to GMPs – may benefit from the insertion of robots and other automation technologies within gloveless isolators and other types of closed systems. This passage aims to completely exclude the human presence from the cleanroom and is key to achieve a completely segregated manufacturing environment, thus maximising the reduction of potential risks of contamination.

The new approach supports the pharmaceutical industry also in overcoming the often observed reluctance to innovate manufacturing processes: automation is now widely and positively perceived by regulators, thus contributing to lowering the regulatory risks linked to the submission of variations to the CMC part of the authorisation dossiers. High costs for the transitions to automated manufacturing – that might include the re-design of the facilities and the need to revalidate the processes – still represent significant barriers to the diffusion of these innovative methodologies for pharmaceutical production.

The elimination of human intervention in aseptic process was also a requirement of FDA’s 2004 Guideline on Sterile Drug Products Produced by Aseptic Processing and of the related report on Pharmaceutical CGMPs for the 21st Century: A Risk-Based Approach. According to Morningstar, for example, the FDA has recently granted approval for ADMA Biologics’ in-house aseptic fill-finish machine, an investment aimed to improve gross margins, consistency of supply, cycle times from inventory to production, and control of batch release.

Another advantage recalled by the PharmTech’s article is the availability of highly standardized robotics systems, thus enabling a great reduction of the time needed for setting up the new processes. The qualification of gloves’ use and cleaning procedures, for example, is no longer needed, impacting on another often highly critical step of manufacturing.

Easier training and higher reproducibility of operative tasks are other advantages offered by robots: machines do not need repeated training and testing for verification of the adherence to procedures, for example, thus greatly simplifying the qualification and validation steps required by GMPs. Nevertheless, training of human operators remains critical with respect to the availability of adequate knowledge to operate and control the automated systems, both from the mechanical and electronic point of view.

Possible examples of automation in sterile manufacturing

Robots are today able to perform a great number of complex, repetitive procedures with great precision, for example in the handling of different formats of vials and syringes. Automatic weighing stations are usually present within the isolator, so to weight empty and full vials in order to automatically adjust the filling process.

This may turn useful, for example, with respect to the production of small batches of advanced therapy medicinal products to be used in the field of precision medicine. Robots can also be automatically cleaned and decontaminated along with other contents of the isolator, simplifying the procedures that have to be run between different batches of production and according to the “Cleaning In Place” (CIP) and “Sterilisation In Place” (SIP) methodologies.

The design and mechanical characteristics of the robots (e.g. the use of brushless servomotors) make the process more smooth and reproducible, as mechanical movements are giving rise to a reduced number of particles.

Examples of gloveless fully sealed isolators inclusive of a robotic, GMP compliant arm were already presented in 2015 for the modular small-scale manufacturing of personalised, cytotoxic materials used for clinical trials.

Maintenance of the closed system may be also, at least partly, automated, for example by mean of haptic devices operated by remote to run the procedure the robotic arm needs to perform. Implementation of PAT tools and artificial intelligence algorithms offers opportunities for the continuous monitoring of the machinery, thus preventing malfunctioning and potential failures. The so gathered data may also prove very useful to run simulations of the process and optimization of the operative parameters. Artificial intelligence may be in place to run the automated monitoring and to detect defective finished products.

Automated filling machines allow for a high flexibility of batch’s size, from few hundreds of vials per hour up to some thousands. The transfer of containers along the different stations of the process is also automated. The implementation of this type of processes is usually associated with the use of pre-sterilised, single-use materials automatically inserted within the isolator (e.g. primary containers and closures, beta bags and disposal waste bags).

Automation may also refer to microbial monitoring and particle sampling operations to be run into cleanrooms, in line with the final goal to eliminate the need of human intervention.

Comparison of risks vs manual processes

A comparison of risks relative to various types of aseptic preparation processes typically run within a hospital pharmacy and performed, respectively, using a robot plus peristaltic pump or a manual process was published in 2019 in Pharm. Technol. in Hospital Pharmacy.

Production “on demand” of tailor-made preparations has been identified by authors as the more critical process, for which no significant difference in productivity is present between the manual and automated process. The robotic process proved to be superior for standardised preparations either from ready to use solutions or mixed cycles. A risk analysis run using the Failure Modes Effects and Criticality Analysis (FMECA) showed a lower level of associated risk.


The opportunity for repurposing of oncology medicines

, , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

Rare cancers, which account for approx. 22% of new cases in Europe, represent an area of low business interest for the pharmaceutical industry, due to the limited number of patients compared to the very high costs to develop targeted treatments. It is thus important to consider the possibility for already existing medicines to be repurposed for a new indication. Lower costs of development and risk of failure, and a shorter time frame to reach registration are upon the main advantages of repurposing compared to de novo development, highlights the Policy Brief presented during the Joint meeting of EU Directors for Pharmaceutical Policy & Pharmaceutical Committee of 8 and 9 July 2021.
The experts addressed more specifically the possibility to achieve non-commercial repurposing of off-patent cancer medicines, which are commonly used off-label to treat patients not responsive to other more innovative types of therapies.

The issue of non-commercial development
The request of a new indication for an already marketed medicine has to be submitted by the Marketing authorisation holder (MAH). This greatly hampers the access to noncommercial repurposing by independent research institutions, as they would need to find an agreement with the MAH, the only responsible for all the interactions with regulatory authorities, at the central (EMA) or national level.
Considering the issue from the industrial point of view, this type of external request may prove difficult to be answered positively, when taking into consideration the very low return on investment that can be expected from a repurposed off-patent medicine. Even EU incentives schemes, such as those on data exclusivity and orphan designation, may not be sufficiently attractive for the industry. Current incentives schemes, for example, allow for an additional year of exclusivity in case of a new indication for a well-established substance, a 10-year market exclusivity
plus incentives in case of an authorised medicine granted with orphan designation, or the extension of the supplementary protection certificate for paediatric studies (plus 2 years market exclusivity for orphans).
The following table summarises the main issues and potential solutions involved in the setting of a specific reference framework for the repurposing of off-patent medicines for cancer, as reported in the WHO’s Policy Brief.

Table: Short overview of issues and solutions in repurposing of off-patent medicines for cancer
(Source: Repurposing of medicines – the underrated champion of sustainable innovation. Copenhagen: WHO Regional Office for Europe; 2021. Licence: CC BY-NC-SA 3.0 IGO)

Many projects active in the EU
The European Commission started looking at the repurposing of medicines with the 2015-2019 project Safe and Timely Access to Medicines for Patients (STAMP). A follow-up phase of this initiative should see the activation in 2021 of a pilot project integrated with the new European Pharmaceutical Strategy.
Several other projects were also funded in the EU, e.g. to better train the academia in Regulatory Science (CSA STARS), use in silico-based approaches to improve the efficacy and precision of drug repurposing (REPO TRIAL) or testing the repurposing of already marketed drugs (e.g. saracatinib to prevent the rare disease fibrodysplasia ossificans progressive, FOP). A specific action aimed to build a European platform for the repurposing of medicines is also included in Horizon Europe’s Work programme 2021 –2022; furthermore, both the EU’s Beating Cancer Plan and the Pharmaceutical Strategy include actions to support non-commercial development for the repurposing of medicines.

According to the WHO’s Policy Brief, a one-stop shop mechanism could be established in order for selected non-commercial actors, the so-called “Champions”, to act as the coordination point for EU institutions involved in the funding of research activities aimed to repurposing. This action may be complemented by the support to public–private partnerships involving research, registration and manufacturing and targeted to guarantee volumes for non-profitable compounds.
Among possible non-profit institutions to access funding for repurposing research in cancer are the European Organisation for Research on Cancer (EORTC) and the Breast Cancer International Group. An overview of other existing initiatives on repurposing has been offered during the debate by the WHO’s representative, Sarah Garner.

How to address repurposing
Looking for a new indication is just one of the possible points of view from which to look at the repurposing of a medicine. Other possibilities include the development of a new administration route for the same indication, the setup of a combination form instead of the use of separated medicinal products, or the realisation of a drug-medical device combination.
A change of strategy in the war on cancer may be useful, according to Lydie Meheus, Managing Director of the AntiCancer Fund (ACF), and Ciska Verbaanderd.
Keeping cancer development under control may bring more efficacy to the intervention than trying to cure it, said ACF’s representatives. The possible approaches include a hard repurposing, with a medicine being transferred to a completely new therapeutic area on the basis of considerations about the tumor biology and the immunological, metabolic and inflammatory pathways, or a soft repurposing within the oncology field, simply looking to new indications for rare cancers.
From the regulatory point of view, a possible example for EMA on how to address the inclusion of new off-label uses of marketed medicines is given by the FDA, which may request a labeling change when aware of new information beyond the safety ones.

The Champion framework
The Champion framework, proposed as a result of the STAMP project, is intended to facilitate data generation and gathering compliant to regulatory requirements for a new therapeutic use for an authorised active substance or medicine already free from of intellectual property and regulatory protection.
A Champion is typically a not-for-profit organisation, which interacts with the MAH in order to include on-label what was previously off-label, using existing regulatory tools (e.g innovation offices and scientific and/or regulatory advice). The Champion shall coordinate research activities up to full industry engagement and would be responsible for filing the initial request for scientific/regulatory advice on the basis of the available data. The pilot project to be activated to test the framework will be monitored by the Repurposing observatory group (RepOG), which will report to the Pharmaceutical Committee and will issue recommendations on how to deal with these types of procedures.

AI to optimise the chances of success
Artificial intelligence (AI) may play a central role in the identification of suitable medicines to be repurposed for a target indication, as it supports the collection and systematic analysis of very large amounts of data. The process has been used during the Covid pandemic, for example, when five supercomputers analysed more than 6 thousand molecules and identified 40 candidates for repurposing against the viral infection.
AI can be used along drug development process, making it easier to analyse the often complex and interconnected interactions which are at the basis of the observed pharmacological effect (e.g drug-target, protein-protein, drug-drug, drug-disease), explained Prof. Marinka Zitnik, Harvard Medical School.
To this instance, graphic neural networks can be used to identify a drug useful to treat a disease, as it is close to the disease in “pharmacological space”. The analysis may also take into account the possible interactions with other medicines. This is important to better evaluate the possible side effects resulting from co-prescribing; annual costs in treating side effects exceed $177 billion in the US alone, according to Prof. Zitnik.