guideline Archives - European Industrial Pharmacists Group (EIPG)

UK will participate to European research programmes


by Giuliana Miglierini The divergent road opened as a consequence of the Brexit, in January 2021, between the European Union (EU) and the United Kingdom (UK) is now converging again as for the possibility for UK researchers to participate to Read more

Insights to the Industrial Pharmacist role for the future


A concept paper from EIPG Advisory Group on Competencies vol.2, 2023 This paper is an update of the previous EIPG paper and intends to raise awareness of the changing requirements of the professional profile of Industrial Pharmacists for Pharmacists at Read more

EMA’s reflection paper on AI in the pharmaceutical lifecycle


by Giuliana Miglierini The rapidly evolving role of artificial intelligence (AI) and its possible application in the pharmaceutical field led the European Medicines Agency (EMA) to publish a draft Reflection paper on the use of AI along the entire lifecycle Read more

Webinar: ICH Q12 Product Lifecycle Management – open road or dead end?

, , , , , , , , , , , , , , , , , , ,

Next EIPG webinar is to be held on Tuesday 18th April 2023 at 17.00 CEST (16.00 BST) in conjunction with PIER and University College Cork. Graham Cook, former Pfizer’s Quality Intelligence and Compliance Information team leader and chair of EFPIA’s Manufacturing and Quality Expert Group (MQEG) will explain the context for the development of the ICH Q12 guideline on Product Lifecycle Management.

The ICH Q12 Product Lifecycle Management guideline reached step 4 in the ICH process in November 2019 – where are we with the adoption of this guideline? This webinar will provide an overview of the content, and discuss the opportunities and implications for implementation of Q12 by industry and regulators.

Graham Cook is a pharmacist with a Ph.D. in pharmaceutics. He was appointed to the British Pharmacopoeia Commission between 2010 and 2021 and chairs the Medicinal Chemicals (MC2) Expert Advisory Group and the Analytical Quality by Design Working Party. Between 2012-2018 he was Chairman of the American Society for Testing Materials (ASTM) International E55 Technical Committee developing pharmaceutical manufacturing standards and continues to serve as a member of the E55 Executive Committee. He was a past chair of Pfizer’s Quality by Design Council and previous roles include Technical Director supporting Wyeth Europa Manufacturing and External Supply, and Director Formulation Development for Wyeth Consumer Healthcare (Richmond, Virginia, USA).

This is an event for members of EIPG member organisations. Contact your national association EIPG representative for further information.


A concept paper on the revision of Annex 11

, , , , , , , , , , , , , , , , , , , , , , ,

This concept paper addresses the need to update Annex 11, Computerised Systems, of the Good Manufacturing Practice (GMP) guideline. Annex 11 is common to the member states of the European Union (EU)/European Economic Area (EEA) as well as to the participating authorities of the Pharmaceutical Inspection Co-operation Scheme (PIC/S). The current version was issued in 2011 and does not give sufficient guidance within a number of areas. Since then, there has been extensive progress in the use of new technologies.

Reasons for the revision of Annex 11 include but are not limited to the following (in non-prioritised order):

  • The document should be updated to replace relevant parts of the Q&A on Annex 11 and the Q&A on Data Integrity on the EMA GMP website
  • An update of the document with regulatory expectations to ‘digital transformation’ and similar newer concepts will be considered
  • References should be made to ICH Q9
  • The meaning of the term ‘validation’ (and ‘qualification’), needs to be clarified
  • Guidelines should be included for classification of critical data and critical systems
  • Important expectations to backup processes are missing e.g. to what is covered by a backup, what types of backups are made, how often backups are made, how long backups are, retained, which media is used for backups, or where backups are kept
  • The concept and purpose of audit trail review is inadequately described
  • Guidelines for acceptable frequency of audit trail review should be provided
  • There is an urgent need for regulatory guidance and expectations to the use of artificial intelligence (AI) and machine learning (ML) models in critical GMP applications as industry is already implementing this technology
  • FDA has released a draft guidance on Computer Software Assurance for Production and Quality System Software (CSA). This guidance and any implication will be considered with regards to aspects of potential regulatory relevance for GMP Annex 11

The current Annex 11 does not give sufficient guidance within a number of areas already covered, and other areas, which are becoming increasingly important to GMP, are not covered at all. The revised text will expand the guidance given in the document and embrace the application of new technologies which have gained momentum since the release of the existing version.

If possible, the revised document will include guidelines for acceptance of AI/ML algorithms used in critical GMP applications. This is an area where regulatory guidance is highly needed as this is not covered by any existing regulatory guidance in the pharmaceutical industry and as pharma companies are already implementing such algorithms.

The draft concept paper approved by EMA GMP/GDP IWG (October 2022) and by PIC/S (November 2022) and released for a two-months consultation until 16 January 2023.


Draft Guideline on the acceptability of names for human medicinal products

, , , , , , , , , , ,

The scope of this guideline is to provide information on the overall procedure for submitting and reviewing the acceptability of proposed (invented) names for human medicinal products processed through the centralised procedure, as well as detailed guidance on the criteria applied by the Name Review Group (NRG) when reviewing the acceptability of names. The main aim is to promote patient safety as an essential principle.

Based on the experience gathered by the NRG since the last revision of the guideline in May 2014, it became apparent that some areas of the guideline would benefit from further clarifications, in particular with regards to the requirements for acceptability of proposed (invented)1 names of medicinal products processed through the centralised procedure.

This 7th update of the guideline further clarifies specific aspects of the criteria applied to address safety and public health concerns, international non-proprietary names issues and product-specific concerns in proposed (invented) names. This update also provides further information on the conditional acceptability of invented names and the process for bilateral negotiations and proposes changes to the duration of the validity of an (invented) name and the review process of the NRG.

Consultation dates: 16/12/2021 to 16/03/2022

Reference number: EMA/CHMP/287710/2014 Rev. 7


Consultation open on the ICH Q13 guideline on continuous manufacturing

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

The new ICH Q13 guideline on the continuous manufacturing of drug substances and drug products aims to harmonise at the international level this rapidly growing sector of pharmaceutical production, providing manufacturers with a flexible approach for the implementation of innovative technologies and ensuring compliance to Current Good Manufacturing Practices (CGMP) specific to continuous manufacturing.

The draft guideline was released in July 2021 and is currently subject to the public consultation phase, which will remain open for comments until 20 December 2021. Comments should be forwarded by e-mail to EMA at the address [email protected]. The process to develop the new guideline started in November 2018 with the publication of the final Concept paper on continuous manufacturing.

The new ICH Q13 guideline is expected to support the adoption of continuous manufacturing systems by the pharmaceutical industry, thus providing innovation of manufacturing methods and availability of more robust and efficient processes, in order to increase options available in case of public health needs and to implement new approaches to Quality Assurance. The new provisions shall also contribute to the reduction of risks for operators, and to resource consumption and waste generation.

The key principles

The guideline on continuous manufacturing builds upon the existing ICH Quality guidelines to specifically address the production of drug substances and drug products for chemical entities and therapeutic proteins, and the conversion of batch manufacturing to continuous manufacturing modalities for existing products. It may also apply to other biological/biotechnological entities. The discussion takes into consideration both scientific and regulatory elements, with respect to the entire lifecycle management of the continuous manufacturing process.

This manufacturing technique is characterised by the continuous feeding of input materials into the productive flow, the transformation of in-process materials within, and the concomitant removal of output materials from the flow. A special attention is paid by the guideline to continuous manufacturing systems in which two or more unit operations are directly connected.

More in particular, Part I of the document addresses general aspects of continuous manufacturing not specific to the technology, dosage form or molecule type under consideration. Many illustrative examples are provided in Part II (Annexes) to support the implementation of the provisions to different operative setups.

Among available modes to run continuous manufacturing, the guideline discusses the combination of traditional approaches inclusive of units operating in a batch mode and integrated continuous manufacturing unit operations, the situation in which all unit operations are integrated and operate in a continuous mode, and the possibility the drug substance and drug product unit operations are integrated across the boundary between drug substance and drug product to form a single continuous manufacturing process.

Part I: How to approach continuous manufacturing

The main part of the guideline is composed of six different sections aimed to provide a general vision of possible issues found in continuous manufacturing, under complementary points of view. The Introduction describes the guiding principles that inspired the document, including scientific and regulatory considerations to be taken in mind for the development of a new continuous manufacturing system.

Section 2 focuses on key concepts, among which is batch definition: according to the guideline, the ICH Q7 definition of a batch is applicable to all modes of continuous manufacturing, for both drug substances and drug products. Different options are available to define the size of a batch produced by continuous manufacturing, i.e., in terms of quantity of output material, quantity of input material, and run time at a defined mass flow rate. Other approaches to batch definition can be also considered upon justification, on the basis of the characteristics of the single process. For example, a batch size range can be established by defining a minimum and maximum run time.

Control strategy, changes in production output and continuous process verification are the key scientific principles addressed in Section 3, being the last item a possible, alternative approach for validating continuous manufacturing processes.

Principles described in ICH Q8-Q11 have always to be taken into consideration while developing the control strategy, using a holistic approach to properly consider aspects specific to continuous manufacturing.

The guideline takes into consideration all items which are part of the control strategy, starting from the state of control, according to ICH Q10, to provide assurance of continued process performance and product quality. Mechanisms should be in place to evaluate the consistency of the operations and to identify parameters outside the historical operating ranges, or signs of drifts/trends indicative the process could be at risk of falling outside the specified operating range. Knowledge of process dynamics is also important to maintain the state of control in continuous manufacturing. To this instance, a useful parameter may be represented by the characterisation of the residence time distribution (RTD). Furthermore, process dynamics should be assessed over the planned operating ranges and anticipated input material variability using scientifically justified approaches.

The guideline provides detailed examples of material attributes that can impact various aspects of continuous manufacturing operation and performance, with specific reference to a solid dosage form process, a chemically synthesised drug substance process, and a therapeutic protein process. Not less important is the design of equipment and the integration to form the continuous manufacturing system. Examples are provided as for the design and configuration of equipment, connections between equipment and locations of material diversion and sampling points.

Process analytical technologies (PAT) developed according to ICH Q8 are suited to implement real-time automated control strategies aimed to promptly detect transient disturbances that may occur during the continuous process. In-line UV flow cells, in-line near-infrared spectroscopy and in-line particle size analysis are possible examples. PAT’s measurements also support traceability of all materials that enter the process and diversion of the potential non-conforming ones.

The different definitions of batches in continuous manufacturing impact also on change management activities. The optimisation of the process may require changes of different parameters; examples discussed by the guideline include changes in run time with no change to mass flow rates and equipment, increase mass flow rates with no change to overall run time and equipment, increase output through duplication of equipment (i.e., scale-out), and scale up by increasing equipment size/capacity.

The above-mentioned critical aspects are also considered in Section 4 as part of the regulatory expectations the development of a continuous manufacturing process should fulfil. A sequential narrative description of the manufacturing process should be included in the Common Technical Document (CTD) and supported by suitable pharmaceutical development data. The description of the continuous manufacturing operational strategy should include operating conditions, in-process controls or tests, criteria that should be met for product collection during routine manufacturing, and the strategy for material collection and, when applicable, diversion. Other information also includes a description of how the material is transported from different pieces of equipment, a flow diagram outlining the direction of material movement through each process step, details about the locations where materials enter and leave the process, the locations of unit operations and surge lines or tanks, and a clear indication of the continuous and batch process steps. Critical points at which process monitoring and controls (e.g., PAT measurement, feedforward, or feedback control), intermediate tests, or final product controls are conducted should be also provided, together with a detailed description of any aspects of equipment design or configuration and system integration identified during development as critical with respect to process control or product quality. Sections 5 and 6 provide, respectively, a Glossary of terms used in continuous manufacturing and a list of useful references.

Part II: Five Annexes to illustrate different fields of continuous manufacturing application

Each of the five Annexes that form Part II of the ICHQ13 guideline addresses issues specific to the application of continuous manufacturing to the target domains typical of the pharmaceutical manufacturing process.

Annex I refers to drug substances for chemical entities. It provides an example of a process containing both continuous and batch operations, where the segment run under continuous conditions consists of a series of unit operations for reactions, liquid phase extraction, carbon filtration, continuous crystallisation, and filtration. A second intermediate synthesised in batch mode enters the continuous flow to participate to the second step in the synthesis of the final drug substance.

Annex II describes a possible implementation of continuous manufacturing for the production of a solid dose drug product.

Here too, a flow diagram exemplifies the different steps of the process, including the blending of different materials followed by direct compression of the tablets and a final step of batch-mode film coating. The guideline also addresses the use of PAT technologies to monitor blend uniformity and trigger tablet diversion. The batch size range is defined on the basis of a predefined mass flow rate.

The manufacturing of therapeutic protein drug substances (e.g., monoclonal antibodies) is discussed in Annex III. This type of process may be used to produce intermediates for the manufacturing of conjugated biological products, and it could be integrated partially or in full of the continuous manufacturing system. The process described in the guideline includes a perfusion cell culture bioreactor with continuous downstream chromatography and other purification steps to continuously capture and purify the target protein. As regard to viral safety and clearance, the guideline specifies that the general recommendations of ICH Q5A remain applicable also for continuous manufacturing; alternative approaches need to be justified.

Many continuous processes integrate in the same flow the manufacturing of both the drug

substance and drug product. This type of circumstance is approached in Annex IV with reference to the production of a small molecule tablet dosage form. The two parts of the overall process may differ under many aspects, e.g., the prevalence for liquid or solid input material addition, different run times, different frequency of in-process measurements. This impacts on the choice of the equipment and the design of locations of in-process measurements and material diversion.

Annex V discusses some possible examples for the management of transient disturbances that may occur during continuous manufacturing, potentially affecting the final quality of the product. Three different approaches are provided, based on the frequent/infrequent occurrence of the disturbance and on its amplitude and duration with respect to predefined acceptance criteria.


The new guideline on combination products between medicines and medical devices

, , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

The new “Guideline on quality documentation for medicinal products when used with a medical device” (EMA/CHMP/QWP/BWP/259165/2019), adopted by the European Medicines Agency in July 2021, will come into force starting 1st January 2022.

The first draft of the guideline was presented in May 2019; according to EMA, the document aims to solve the often observed issues of inconsistent and/or incomplete data submitted to competent authorities. It also considers the amendment to Annex I of Directive 2001/83/EC introduced by Article 117 of the new Medical Devices Regulation ((EU)2017/745, MDR).

A Questions and Answers document to support in the implementation of the MDR and In Vitro Diagnostic Medical Devices Regulations ((EU) 2017/746) was also published by EMA in June 2021.

Three different combinations with medical devices

The guideline applies to the product-specific quality aspects of a medical device/device part, that may have an impact on the quality, safety and/or efficacy of the associated medicinal product, as defined by a specific risk assessment. The submitted documentation is part of the Quality part of a marketing authorisation dossier. Makers has also to prove the conformity of the device/device part to MDR’s requirements by mean of a EU Declaration of Conformity or CE certification released by the Notified Body that assessed the device.

The products covered by the new guideline include integral products made up of an integral and not reusable combination of the medical device/device part and the medicinal product (where the action of the medicinal product is principal), medical devices placed on the market co-packaged with a medicinal product, and referenced medicinal products to be used in conjunction with a specific medical device described in the product information (SmPC and/or package leaflet) and obtained separately by the user. The classification in one of the above mentioned categories of medicine/device combination impacts the information that should be submitted to competent authorities.

The guideline applies also to medicinal products intended to be used with a Class I medical devices, with electromechanical devices (including active implantable devices), electronic add-ons and digital elements of devices (if expected to impact the benefit-risk assessment of the medicinal product from a quality perspective). Combined advanced therapy products defined under Article 2(1)(d) of the ATMP Regulation fall out of the scope of Article 117, as well as veterinary products, in-vitro diagnostic devices (including companion diagnostics), system and procedure packs regulated under Article 22 of the MDR.

Examples of integral products include medicinal products with an embedded sensor performing an ancillary action, single-use prefilled syringes, pens or injectors, drug-releasing intrauterine devices or pre-assembled, non-reusable applicators for vaginal tablets, dry powder inhalers and preassembled, ready-to-use pressurised metered dose inhalers, implants containing medicinal products whose primary purpose is to release the medicinal product. For this type of products, the safety and performance of the device/device part has to reflect the relevant General Safety and Performance Requirements (GSPRs) described in Annex I of the MDR.

Examples of co-packaged or specifically referenced medical devices include spoons and syringes used for oral administration, injectors needles, refillable or reusable pens/injectors, dry powder inhalers and metered dose inhalers, nebulisers and vaporisers and single use or reusable pumps for medicinal product delivery. These two categories of products should comply with the requirements of the applicable medical device legal framework.

The approach to the overall product quality

The discussion of the quality of the device/device part on the Quality Target Product Profile (QTPP), Critical Quality Attributes (CQA) and overall control strategy of the medicinal product has to be included in the regulatory dossier.

More specifically, for integral products the EU Declaration of Conformity or the relevant EU certificate issued by a Notified Body for the device/device part has to be produced. Should this not be possible, the applicant has to provide an opinion (NBO) on the conformity of the device/device part with the relevant GSPRs, issued by a Notified Body enlisted in the NANDO website.

The information provided with the authorisation dossier shall be assessed by the competent authority to determine the overall benefit/risk ratio of the medicinal product. All information relevant to the device/device part has to be submitted using the usual eCTD format. Data on preexisting combination of the device/device part with an already approved medicinal product can be provided on a case-by-case basis and needs to be adequately justified. Early scientific and/or regulatory advice can be activated in the case of particularly innovative and emerging technologies.

The guideline provides a detailed description of the information to be submitted to competent authorities in relation to each of the different types of device/medicinal products combinations.

Reference is made to Module 1 (Product Information), Module 3.2.P (Drug Product), Module 3.2.A.2 (Adventitious Agents Safety Evaluation) and Module 3.2.R (Regional Information, Medical Device). This last section includes the Notified Body Opinion for integral medicinal products in the form of a summary technical report. Usability studies should be also available in the case supporting information is not included in the dossier, and the device/device part has not been used in the intended user population before, or where other aspects of the intended use, including changes to the clinical setting or use environment, are new or different from the intended use as confirmed by the EU certificate issued by a Notified Body or NBO.

The guideline also highlights the need the device/device part should be as advanced as possible in the development process (e.g. meets relevant GSPRs) by the time pivotal clinical trials commence. Any change to the device occurred during the trials has to be described, evaluated and justified with respect to the potential impact on the quality, safety and/or efficacy of the medicinal product. The guideline also provides information on how to manage the life cycle of the integral, co-packaged or referenced medicinal products.


The new PIC/S guideline on data integrity

, , , , , , , , , , , , , , ,

by Giuliana Miglierini

The long waited new PIC/S guideline PI 041-1 has been finally released on July 1st; the document defines the “Good Practices for Data Management and Data Integrity in regulated GMP/GDP Environments”, and it represents the final evolution of the debate, after the 2nd draft published in August 2016 and the 3rd one of November 2018.
While maintaining the previous structure, comprehensive of 14 chapters for a total of 63 pages, some modifications occurred in the subchapters. The Pharmaceutical Inspection Co-operation Scheme (PIC/S) groups inspectors from more than 50 countries. PIC/S guidelines are specifically aimed to support the inspectors’ work, providing a harmonised approach to GMP/GDP inspections to manufacturing sites for APIs and medicinal products.

Data integrity is a fundamental aspect of inspections
The effectiveness of these inspection processes is determined by the reliability of the evidence provided to the inspector and ultimately the integrity of the underlying data. It is critical to the inspection process that inspectors can determine and fully rely on the accuracy and completeness of evidence and records presented to them”, states the Guideline’s Introduction.
This is even more true after the transformation impressed by the pandemic, resulting in a strong acceleration towards digitalisation of all activities. The huge amount of data produced every day during all aspects of the manufacturing and distribution of pharmaceutical products needs robust data management practices to be in place in order to provide adequate data policy, documentation, quality and security. According to the Guideline, all practices used by a manufacturer “should ensure that data is attributable, legible, contemporaneous, original, accurate, complete, consistent, enduring, and available”. This means also that the same principles outlined by PIC/S may be used also to improve the quality of data used to prepare the registration dossier and to define control strategies and specifications for the API and drug product.
The guidance applies to on-site assessments, which are normally required for data verification and evidence of operational compliance with procedures. In the case of remote (desktop) inspections, as occurred for example during the pandemic period, its impact will be limited to an assessment of data governance systems. PIC/S also highlights that the guideline “is not intended to provide specific guidance for ‘for-cause’ inspections following detection of significant data integrity vulnerabilities where forensic expertise may be required”.

The impact on the entire PQS
PIC/S defines data Integrity as “the degree to which data are complete, consistent, accurate, trustworthy, and reliable and that these characteristics of the data are maintained throughout the data life cycle”.
This means that the principles expressed by the guideline should be considered with respect to the entire Pharmaceutical Quality System (and to the Quality System according to GDPs), both for electronic, paper-based and hybrid systems for data production, and fall under the full responsibility of the manufacturer or the distributor undergoing the inspection.
The new guidance will represent the baseline for inspectors to plan risk-based inspections relative to good data management practices and risk-based control strategies for data, and will help the industry to prepare to meet the expected quality for data integrity, providing guidance on the interpretation of existing GMP/GDP requirements relating to current industry data management practices without imposition of additional regulatory burden. PIC/S highlights that the new guidance is not mandatory or enforceable under the law, thus each manufacturer or distributor is free to voluntarily choose to follow its indications.

Principles for data governance
The establishment of a data governance system, even if not mandatory, according to PIC/S would support the company to coherently define its data integrity risk management activities. All passages typical of the data lifecycle should be considered, including generation, processing, reporting, checking, decision-making, storage and elimination of data at the end of the retention period.
“Data relating to a product or process may cross various boundaries within the lifecycle. This may include data transfer between paper-based and computerised systems, or between different organisational boundaries; both internal (e.g. between production, QC and QA) and external (e.g. between service providers or contract givers and acceptors)”, warns PIC/S.
Chapter 7 specifically discusses the Good document management practices (GdocPs) expected to be applied, that can be summarised by the acronyms ALCOA (Attributable, Legible, Contemporaneous, Original, Accurate) and ALCOA+ (the previous plus Complete, Consistent, Enduring and Available).
Data governance systems should take into consideration data ownership and the design, operation and monitoring of processes and systems. Controls should include both operational (e.g. procedures, training, routine, periodic surveillance, etc) and technical features (e,g, computerised system validation, qualification and control, automation or other technologies to provide control of data). The entire organisation should commit to the adoption of the new data culture, under a top-down approach starting from the Senior management and with evidence provided of communication of expectations to personnel at all levels. Sections 6 of the guideline provides some examples in this direction. The ICH Q9 principles on quality risk management should be used to guide the implementation of data governance systems and risk minimisation activities, under the responsibility of the Senior management. Efforts in this direction should always be commensurate with the risk to product quality, and balanced with other quality resource demands. In particular, the risk evaluation should consider the criticality of data and their associated risk; the guideline provides an outline of how to approach the evaluation of both these factors (paragraphs 5.4 and 5.5). Indication is also provided on how to assess the effectiveness of data integrity control measures (par. 5.6) during internal audit or other periodic review processes.
Chapter 8 addresses the specific issues to be considered with respect to data integrity for paperbased systems, while those related to computerised systems are discussed in Chapter 9. As many activities typical of the pharmaceutical lifecycle are normally outsourced to contract development & manufacturing organisations (i.e. API manufacturing, formulation, analytical controls, distribution, etc.), PIC/S also considered in the guideline the aspects impacting on the data integrity of the overall supply chain (Chapt. 10). “Initial and periodic re-qualification of supply chain partners and outsourced activities should include consideration of data integrity risks and appropriate control measures”, says the guideline.

The regulatory impact of data integrity
Recent years have seen the issuance of many deficiency letters due to problems with data integrity,. Approx. half (42, 49%) of the total 85 GMP warning letters issued by the FDA in 2018, for example, included a data integrity component.
The new PIC/S guideline provides a detailed cross-reference table linking requirements for data integrity to those referring to the other guidelines on GMPs/GDPs for medicinal products (Chapter 11). Guidance on the classification of deficiencies is also included in the document, in order to support consistency in reporting and classification of data integrity deficiencies. PIC/S notes that this part of the guidance “is not intended to affect the inspecting authority’s ability to act according to its internal policies or national regulatory frameworks”.
Deficiencies may refer to a significant risk for human or animal health, may be the result of fraud, misrepresentation or falsification of products or data, or of a bad practice, or may represent an opportunity for failure (without evidence of actual failure) due to absence of the required data control measures. They are classified according to their impact, as critical, major and other deficiencies.
Chapter 12 provides insight on how to plan for the remediation of data integrity failures, starting from the attention required to solve immediate issues and their associated risks. The guideline lists the elements to be included in the comprehensive investigation to be put in place by the manufacturer, as well as the corrective and preventive actions (CAPA) taken to address the data integrity vulnerabilities. A Glossary is also provided at the end of the guideline.