manufacturing process Archives - European Industrial Pharmacists Group (EIPG)

A new member within EIPG


The European Industrial Pharmacists Group (EIPG) is pleased to announce the Romanian Association (AFFI) as its newest member following the annual General Assembly of EIPG in Rome (20th-21st April 2024). Commenting on the continued growth of EIPG’s membership, EIPG President Read more

The EU Parliament voted its position on the Unitary SPC


by Giuliana Miglierini The intersecting pathways of revision of the pharmaceutical and intellectual property legislations recently marked the adoption of the EU Parliament’s position on the new unitary Supplementary Protection Certificate (SPC) system, parallel to the recast of the current Read more

Reform of pharma legislation: the debate on regulatory data protection


by Giuliana Miglierini As the definition of the final contents of many new pieces of the overall revision of the pharmaceutical legislation is approaching, many voices commented the possible impact the new scheme for regulatory data protection (RDP) may have Read more

Environmental sustainability: the EIPG perspective

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Piero Iamartino

Although the impact of medicines on the environment has been highlighted since the 70s of the last century with the emergence of the first reports of pollution in surface waters, it is only since the beginning of the 2000s that specific regulatory interventions have been designed to promote the identification of the different sources of pollution and the determination of possible actions to be taken.

The obligation to submit the result of an environmental risk assessment of a medicinal product at the same time as the application for marketing authorisation was introduced only after the publication of the Environmental Risk Assessment (ERA) guideline issued by EMA in 2006, which sets out the guidelines and describes a series of standard tests to be performed. However, this first piece of legislation immediately highlighted limitations as it was applied only to the marketing of medicines from that moment on, without considering the contribution of medicines with the same active ingredient and neglecting the evaluation of those already authorised and on the market.

Over the following years, the problem of the environmental impact of medicines was tackled more extensively with the launch of several projects promoted by the European Commission in partnership with the EFPIA (IMI: Chem21, iPiE and Premier) which have deepened the characterisation of environmental risks, with the identification of priority criteria to be assigned to interventions and the development of models and tools to measure the sustainability of the processes of manufacture, in particular of active substances.

These important projects in recent years have been added to the initiatives undertaken at the European level with the publication in 2020 of the new European pharmaceutical strategy which defines some specific objectives for the mitigation of the environmental impact of medicines that will be reflected in the upcoming revision of European pharmaceutical legislation and which are part of the broader regulatory acts for the ecological transition envisaged by the Green Deal European.

In light of the above, a gradual transformation of some processes and operating methods carried out by the European pharmaceutical industry is envisaged, starting from the development of a new medicinal product to its distribution and, similarly, adequate regulatory interventions will have to be envisaged on the management of the correct use and disposal of medicinal products since the environmental impact of this last phase of the life cycle of a medicinal product is predominant.

Although these changes involve all professionals working in the pharmaceutical industry, a key role is played by the industrial pharmacist who, due to his professional profile dictated by his university curriculum, has the fundamental knowledge bases to occupy different positions in the industry, covering the entire path of medicine from its conception and manufacture as an active ingredient, its development as a medicinal product and its distribution on the market.

With this in mind, EIPG has started the preparation of a document that analyses the main critical areas of the entire production process of a medicinal product and sets out its position on the interventions considered a priority in a perspective of changes that will lead to the inclusion of new methods alternative material resources and will require new skills.

The first critical area examined is the manufacture of the active ingredient, both for its impact as such on the environment and for the process applied to its manufacture. The problem is particularly relevant for small molecules, while it is substantially insignificant for large molecules and even less so for products based on the use of cellular tissues or biological structures (ATMPs). The fundamental parameters to be considered are the environmental toxicity and the bio-degradability of the product. The problem is how to reconcile these two parameters with the chemical-physical and biopharmaceutical characteristics that an active ingredient must possess to be administered, absorbed and then carry out the desired pharmacological activity. The effort required in the design and screening phase of a new small molecule is the identification of a structural parameter that makes it more eco-friendly without compromising its purpose. Although this criticality does not arise in the case of large molecules and ATMPs, for these active ingredients the environmental impact due to higher energy consumption attributable to the need for low-temperature storage conditions may prevail.

About the production process of small molecules, which today still represent the largest percentage of active ingredients in development and on the market, it is essential to definitively introduce the application of the principles of Green Chemistry, as highlighted by the most recent studies (IMI Premier Project). The prospect is that of a progressive change in the synthesis processes with the use of reagents and less toxic solvents that are entirely recyclable and reusable, as well as the development of a synthesis route that allows the least number of operations, generating the least amount of waste and maintaining the best possible efficiency. It is desirable to increase biocatalysis processes as well as the introduction of more incisive treatments in the management of industrial wastewater to accentuate chemical degradation before their transfer to eternity.

A second large critical area where important changes are expected is the manufacturing processes of the medicine from the active substance to its availability for distribution on the market. Also in this area, interventions can be identified to optimize the use of the resources used, with particular reference to energy consumption and the use of water. These two parameters are already the subject of numerous studies for the development of new energy containment processes with the introduction of innovative plant solutions, and further improvements are expected considering the benefits that derive from them in terms of efficiency and therefore costs.

Among the parameters closely linked to the medicinal product that shows a significant environmental impact, attention must be paid to the packaging materials used in the pharmaceutical industry. A priority intervention must focus on certain widely used plastic materials that are difficult to dispose of and not recyclable, identifying alternative materials with the consequent need to study their compatibility with the medicinal product, especially if used in direct contact, and their impact on the stability profile of the same, as required by the reference standards. Other objectives should be the choice of secondary packaging materials that can be easily recycled by the end user, as well as the reduction of their volume, also favoured by the digitization of the information materials related to them. The implementation of these interventions will require adjustments both to the packaging lines used in the pharmaceutical industry and to the alternative ways of managing products in the transport and distribution phase, with a marked increase in studies for the reuse of packaging materials in line with the principles of the circular economy.

The prospects of the expected changes in the path from the active substance to the medicine will have to be accompanied by an assessment of the possibilities of intervening in the supply chain used by the pharmaceutical industry involving suppliers of active ingredients, materials and medicines. The regulatory guidelines and commitments on actions to improve environmental sustainability will require a progressive review in the management and evaluation of suppliers according to their ability to apply the ecosustainability criteria of their processes, giving preference to those who take this path.

The above analysis, limited to the areas of greatest environmental criticality, highlights the transformations that are expected in the pharmaceutical industry in the coming years with the implementation of the provisions that will be progressively adopted at the European level. We think there should be good coordination between the impositions for environmental sustainability and the need to adhere to pharmaceutical regulatory requirements to facilitate the implementation of changes. This coordination is essential as innovation will be the guiding criterion for the introduction of the required changes to meet the sustainability objectives.


How AI is Changing the Pharma Industry and the Industrial Pharmacist’s Role

, , , , , , , , , , , , , , , , , , , , , , , , , , ,

Svala Anni, Favard Théo, O´Grady David

The pharmaceutical sector is experiencing a major transformation, propelled by groundbreaking drug discoveries and advanced technology. As development costs in the pharmaceutical industry exceed $100 billion in the U.S. in 2022, there is a pressing need for innovative solutions to accelerate drug development. The urgency stems from a renewed focus on novel approaches, driven by the complexities of advanced therapeutic modalities like mRNA, CGT, and synthorins. This blog delves into the influence of Artificial Intelligence (AI) on overcoming the unique hurdles within the manufacturing domain of the pharmaceutical industry. It specifically emphasizes the crucial partnership between AI and human expertise, shedding light on the vital role of industrial pharmacists in optimizing manufacturing processes.

The demands for precision, quality, and compliance in pharmaceutical manufacturing present challenges, notably in managing rising costs and intricate logistical processes. The adoption of various AI technologies, including generative AI (GenAI), represents a strategic shift, aiming to augment human capabilities while automating routine tasks and facilitating knowledge transfer in the ever-evolving landscape of pharmaceutical production

The fourth industrial revolution is upon us with the development of cyber physical systems and the fifth industrial revolution is on the horizon with the advancement of artificial intelligence (AI) in partnership with humans to enhance workplace processes. The factory of the future is here with digitalization, AI, Big data, robotics and advanced manufacturing becoming the norm rather than the exception in the pharmaceutical industry.

GenAI excels in promoting collaboration while surpassing traditional task automation. It is key in transmitting complex knowledge crucial for maintaining quality, compliance, and safety in pharmaceutical manufacturing. AI empowers experts to document processes using everyday devices, transforming this raw data into straightforward, visual instructional guides.

The pharmaceutical industry confronts distinct manufacturing challenges, including complex processes and rigorous regulatory standards. AI can offer several innovative and compliant solutions. In addition, AI platforms swiftly update training materials, creating dynamic learning environments that keep the workforce informed about the latest developments. These platforms are redefining roles by taking over mundane tasks, thereby freeing human workers to focus on more strategic and creative roles. Furthermore, AI guarantees uniform training across global operations, ensuring consistent processes and fostering global standardization.

Combining humans and AI creates a powerful team that may benefit everyone. AI helps make learning experiences unique for each person, fitting their own way of learning. It also makes it easy for people to get the information they need anytime, thanks to the latest tech advancements. AI is great at helping people from different cultures and who speak different languages work together better. It can give feedback right away, so mistakes don’t spread. Plus, AI holds onto valuable knowledge, reducing the chance of losing important information when people leave or retire. Together, all these benefits show how AI can make a big, notable change also in the pharmaceutical field.

AI – Shaping the Future of Pharmaceutical Industry

AI is transforming the pharmaceutical landscape, particularly in areas vital to industrial pharmacists, such as manufacturing, quality control, and distribution. These professionals play a pivotal role in skillfully integrating AI, serving as the human-in-the-loop to enhance efficiency and ensure safety in pharmaceutical operations.

AI elevates the manufacturing process, forecasts maintenance needs, and sharpens quality control. Industrial pharmacists are pivotal in deploying these AI-driven techniques, ensuring that operations are not only effective but also meet high-quality standards and regulatory requirements.

The Role of Industrial Pharmacists

Industrial pharmacists are essential contributors to this technological revolution, actively collaborating with data engineers and scientists. They play a pivotal role in ensuring regulatory compliance, upholding product quality, and leveraging AI to enhance drug development processes, inventory management, and distribution. Industrial pharmacists:

  • are essential in incorporating AI into manufacturing workflows.
  • ensure AI tools align with regulatory requirements and uphold product quality.
  • utilize AI to accelerate and economize the drug development process.
  • leverage AI for more effective inventory and distribution management.
  • analyze data generated by AI systems for informed decision-making in production and quality control.
  • ensuring the quality of pharmaceutical products, they play a crucial role in safeguarding patient safety.
  • leverage AI to identify eco-friendly manufacturing practices, contributing to sustainable pharmaceutical production.

Risks and Challenges

Using AI in the pharmaceutical environment involves navigating risks such as ensuring data privacy and security, maintaining regulatory compliance, addressing biases and ethical concerns, and dealing with the quality and reliability of data. Additionally, there are challenges related to intellectual property issues, integration with existing systems, scalability and maintenance, and dependence on external vendors. To effectively leverage AI benefits while minimizing these risks, a comprehensive strategy encompassing robust data governance, ethical AI practices, ongoing regulatory engagement, and careful technological and organizational change management is essential.

Conclusion

The pharmaceutical industry stands on the brink of a transformative era, driven by the profound potential of AI to reshape its landscape. The key to unlocking this potential lies in the proactive involvement of industrial pharmacists, who are urged to assume a more strategic and leading role in steering innovation.

Traditionally perceived as followers, industrial pharmacists now face a pivotal moment to transition into drivers of change. This isn’t merely a shift in perception; it is a call to action. The integration of AI offers a unique opportunity for pharmacists to shape the future of pharmaceutical care actively and courageously.

In this evolving landscape, industrial pharmacists are not just guardians of compliance but architects of efficiency, adaptability, and innovation. Collaborating seamlessly with AI technologies, they hold the power to propel the industry forward. Despite certain challenges, this collaboration looks promising – it isn`t just compliant and efficient but also dynamic and inventive.

The call to action is clear – pharmacists, especially those in industrial roles, are not merely spectators in this technological revolution; they are the forerunners, charting a course towards a more responsive and innovative pharmaceutical future.

References:

Artificial trends: intelligence in the pharmaceutical industry: analyzing, innovation, investment and hiring

Insights to the Industrial Pharmacist role for the future: A concept paper from EIPG Advisory Group on Competencies, vol 2, 2023

Pizoń J, Gola A. Human–Machine Relationship—Perspective and Future Roadmap for Industry 5.0 Solutions. Machines. 2023; 11(2):203.

Zheng, S. (2023, Nov. 2). “Empowering the pharma workforce.” Pharma Manufacturing.

Contact for further information:
Anni Svala, Vice-President for European Affairs, European Industrial Pharmacists Group, [email protected]


EMA’s consultation on draft Q&As on remote certification of batches by QP

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

The last two years saw the implementation of a high degree of regulatory flexibility as a mean to respond to the many challenges posed by the travel bans consequent to the pandemic. After this “experimental” phase, regulatory authorities are now considering the possibility to allow the routine implementation of some remote procedures in the field of pharmaceutical production.

It is the case of the remote certification/confirmation of batches by the Qualified Person (QP): after the publication of a draft guideline in the form of Q&As (EMA/INS/169000/2022), the European Medicines Agency (EMA) has launched a short public consultation which will remain open up to 13 June 2022. Comments may be sent by email.

The guideline offers EMA’s point of view on the requirements for the physical attendance at the authorised manufacturing site applying to QPs in order to routinely run the remote certification of batches, outside emergency situations. The document has been drafted by the GMDP Inspectors Working Group; it is composed of four questions and their relative answers and it addresses some considerations arising from the experience gained on the application of the guidelines for human and veterinary medicines issued during the pandemic. These last ones were elaborated in cooperation between the European Commission, the Coordination group for Mutual recognition and Decentralised procedures – human (“CMDh”), the Inspectors Working Group, the Coordination group for Mutual recognition and Decentralised procedures – veterinary (“CMDv”) and EMA.

The Agency also warns that the contents proposed by new Q&As’ guideline may be subject to any other interpretation by the European Court of Justice, which is the ultimate responsible for the interpretation of the EU legislation.

The contents of the Q&As

The routine remote certification or confirmation of batches may in future apply to the activities carried out by the QPs within the EU and European Economic Area (EEA), with reference to manufactured or imported human and veterinary medicinal products and investigational medicinal products.

The first answer clarifies that it could be possible for the QP to routinely run remote batch certification or confirmation only if this type of practice is accepted by the relevant national competent authority (NCA) of the member state where the authorised site is located. To this instance, it should be noted that some NCAs may request some specific requirements to authorise the routine remote certification procedure, for example with reference to the location of the QPs.

Should the remote certification be allowed on a routine basis, specific requirements should be met in order to validate this practice, starting from its full compliance to the EU legislation and EU GMP guidelines.

The answer to question 2 specifies that all activities should take place in an EU/EEA country, and that the time spent by the QP at the authorised site should be commensurate with the risks related to the processes” hereby taking place. To this instance, it is of paramount importance the ability to demonstrate that the QP acting from remote has maintained full knowledge of the products, manufacturing processes and pharmaceutical quality system (PQS) involved in the remote certification/confirmation of batches. That also means that the QP should be highly reliant on the PQS of the authorised site, and this would be only possible by spending an adequate time on-site to verify the adequacy of the PQS with respect to the processes of interest. The pharmaceutical quality system should also include details of all the procedures used for the routine remote certification/confirmation of batches. The possible use of this type of remote procedure by the QP should be also clearly mentioned in the technical agreement governing the relationship between the authorisation holder and the QP, which should also specify all cases requiring the presence on-site of the QP. A robust IT infrastructure should be in place to guarantee the remote access of the QP to all the relevant documentation in the electronic format needed to achieve bath certification/confirmation, according to the provisions described in Annex 16 to the GMPs (Certification by a Qualified Person and Batch Release). To this instance, presence on-site should be always considered to solve issues that cannot properly be addressed from remote. The demonstration of the presence on-site of the QP falls under the responsibility of the Manufacturing/Importers Authorisation (MIA) holders.

These are also responsible to make available to the QPs all the hardware and software needed to guarantee the remote access to the relevant documentation (e.g. manufacturing executions systems, electronic batch records system, laboratory information systems etc.) as well as batch registers. All IT systems used for remote batch release should comply with the requirements of Annex 11 to the GMP (Computerised Systems).

On the same basis, it should be possible for NCAs to contemporaneously access for inspection all documentation and batch registers involved in routine remote certification/confirmation at the authorised site of batch release. MIA holders should also guarantee the QP is the only allowed person to access the batch certification/confirmation function and batch register, that the transferred data are complete and unchanged, and that an adequate system for electronic signatures is in place.

Question 3 simply clarifies that some members states may have some specific requirements about the country of residence of the QP, for example it should be the same where the authorised site involved in the remote certification procedure is located.

The last question discusses technical requirements linked to IT-security and data integrity for remote access, a type of procedure presenting a higher intrinsic risk in comparison to the same activities carried on-site. Here again, the main reference is Annex 11; all equipment and software used for remote certification of batches should always reflect the current technological developments.

Among the suggestions made by the Q&A draft guideline is the precise identification of all hardware transferred off-site to the QP, that should be inventoried and kept updated. Hard disks should be encrypted, and ports not required, disabled.

Attention should also be paid to the configuration of any virtual private network (VPN) used by the QP to improve the security of the connection to the IT infrastructure of the authorised site and to prevent unauthorised accesses. Authentication should be based on recognised industry standards (e.g. two-factor or multifactor authentication, with automatic date of expiry). The transfer of data should be secured by strong transport encryption protocols; assignment of individual privileges and technical controls falls under the responsibility of the MIA holder


Key issues in technical due diligences

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

Financial due diligence is a central theme when discussing mergers and acquisitions (M&A). Not less important for the determination of the fair value of the deal and the actual possibility to integrate the businesses are technical due diligences, assessing the technological platforms and product portfolios to be acquired. A series of articles published in Outsourced Pharma discussed, under different perspectives, the main issues encountered in technical due diligences. We provide a summary of main messages to be kept in mind while facing this type of activity.

Technical due diligence of pharmaceutical products

The third millennium is being highly characterised by the closure of many M&A operations in the biopharma sector as a way to support the transfer of new technological platforms from their originators – usually an innovative start-up or spin-off company – to larger multinational companies. The latter are usually managing advanced clinical phases of development and regulatory procedures needed to achieve market authorisation in the territories of interest.

Furthermore, the acquisition of already marketed products often represents a way to renew the product portfolio or to enter new markets. Should this be the case, an article by Anthony Grenier suggests that a main target is represented by the understanding of how the products were maintained on the market by the seller company.

The restructuring of assets following acquisition may require the transfer of products manufacturing to sites of the acquiring company, or the possibility to use the services of a Contract Manufacturing Organisation (CMO). These are all issues that should enter the technical due diligence, that usually includes the exchange of information about the product, equipment, manufacturing, quality, and regulatory aspects of the deal.

The regulatory and quality perspectives

Regulatory due diligence takes into consideration the approval status of the interested products in target markets. Relevant documentation to be examined include the CMC dossier (Chemistry, Manufacturing, and Controls) and/or the Common Technical Document (CTD), and the current status of approval procedures undergoing, for example, at the FDA in the US or the European Medicines Agency in the EU. A possible issue mentioned by Anthony Grenier refers to the assessment and management of dossiers relative to unfamiliar markets, that may differ as for regulatory requirements and thus need the availability of dedicated internal resources or consultants. This type of considerations may impact also on the selection of CMOs; the transfer of older dossiers is also challenging, as they often do not reflect current requirements and standards and may require significant investments (including the request of additional studies) to support the submission of variations.

A visit to the facility manufacturing the product during the second round of bidding, in order to better understand issues related to the technology transfer, is also suggested. Technical documentation available to assessors should include copies of batch records and specifications for raw materials, active ingredients, and drug products. Analysis of the annual trends in manufacturing may be also useful, as for example a high number of rejected batches may indicate the need for a reformulation of the product.

From the quality perspective, the due diligence should also examine issues with supply or quality agreements, and the date of the last revision of documents. Examples of relevant documentation to be examined include process validation reports, change control lists, stability studies, inspection reports, etc.

The manufacturing perspective

In a second article, A. Grenier examined technical due diligence from the perspective of manufacturing, equipment and logistics.

The manufacturing process is key to ensure the proper availability of the product in the target markets, and it should be correctly transferred to the acquiring company or the CMO. To this instance, executed batch records are important to provide information on actual process parameters, processing times, and yields. Here again, process validation reports and master supply agreements provide information on the robustness of the processes and the steady supply of raw materials.

Consideration should also be paid to the transfer of any product-dedicated equipment involved in the manufacturing or packaging process, including its actual ownership. The time period for technology transfer should be long enough (at least 12 months) to ensure for the proper execution of all operations.

From the logistics point of view, it is important to understand the need to update printed components to reflect the new ownership of the product, a task that may result complex should it be marketed in many different countries and/or in many different dosage forms. Inventories of all raw materials, APIs, and packaging components should be also assessed, paying a particular attention to narcotic products for which specific production quotas may be present in some countries (e.g. the US).

Technical due diligence of entire facilities

M&A deals often involve the acquisition of one or more manufacturing facilities and other complex industrial assets. Anthony Grenier also examined the key factors impacting on this type of technical due diligence.

The “technical fit” between the two companies involved in the deal is a primary target for assessment, in order to evaluate the achievable level of integration and the existing gaps in experience to be filled. This may refer, for example, to the acquisition of a manufacturing plant for non-sterile products that would need to be converted for aseptic manufacturing: a goal that may require the building of new areas, thus the availability of enough space to host them. Experience of the staff is also highly valuable, as well as the successful introduction of new equipment.

Capacity of the plant should also be considered, neither in excess or defect with respect to the effective needs in order to avoid waste of resources or need of new investments. Experience of the seller company in CMO may be also relevant, as it may be used to fill some of the excess capacity. To this instance, the fields of specialisation and the availability of containment capability to avoid cross contamination are important parameters to be considered.

Compliance of the facility to regulatory requirements arising from the different target markets should also be assessed, as it impacts on the positive outcomes of inspections.

Highly complex technical due diligences

Technical due diligence becomes even more complex in the case of multi-site acquisitions. In this case, visits to assess specificities of the single facilities involved in the operation may be needed. The above mentioned parameters of technical fit, capacity and compliance should be always considered, and the take-at-home message from the A. Grenier is for the acquiring companies to “look for the weakest links that would prohibit them from bringing their product or technology to the sites to be acquired”. Capacity optimisation may be needed, for example.

The different steps of technical due diligence have been also examined in another article by Anne Ettner and Norbert Pöllinger published in Pharm. Ind.. They presented a mind map that clarifies the complexity of the items that should enter the due diligence process, and lists typical documents and questions that should be taken into consideration. Examples and case studies are also provided relative to the assessment of starting materials, the evaluation of the pharmaceutical formulations and that of the production process.