pharmaceutical manufacturing Archives - European Industrial Pharmacists Group (EIPG)

The EU Parliament voted its position on the Unitary SPC


by Giuliana Miglierini The intersecting pathways of revision of the pharmaceutical and intellectual property legislations recently marked the adoption of the EU Parliament’s position on the new unitary Supplementary Protection Certificate (SPC) system, parallel to the recast of the current Read more

Reform of pharma legislation: the debate on regulatory data protection


by Giuliana Miglierini As the definition of the final contents of many new pieces of the overall revision of the pharmaceutical legislation is approaching, many voices commented the possible impact the new scheme for regulatory data protection (RDP) may have Read more

Environmental sustainability: the EIPG perspective


Piero Iamartino Although the impact of medicines on the environment has been highlighted since the 70s of the last century with the emergence of the first reports of pollution in surface waters, it is only since the beginning of the Read more

Reactions to the proposed ban of PFAS

, , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

A proposal to ban around 10,000 per- and polyfluoroalkyl substances (PFAS) was submitted in January 2023 to the European Chemicals Agency (ECHA) by authorities of Germany, Denmark, the Netherlands, Norway, and Sweden. The proposal was published on ECHA website on 7 February 2023.

The focus is the so-called “forever chemicals”, i.e. very high persistence PFAS typically characterised by bioaccumulation (also in plants), great mobility and a long range transport potential, and potential endocrine activity.

This landmark proposal by the five authorities supports the ambitions of the EU’s Chemicals Strategy and the Zero Pollution action plan. While the evaluation of such a broad proposal with thousands of substances, and many uses, will be challenging, we are ready.”, said Peter van der Zandt, ECHA’s Director for Risk Assessment.

The proposal was open to public consultation on 22 March 2023, giving rise to the collection of 5,600 comments. Opinions will be issued by ECHA’s scientific committees for Risk Assessment (RAC) and for Socio-Economic Analysis (SEAC), to be then forwarded to the EU Commission for final decision.

 The current role of PFAS

PFAS are characterised by the presence of alkyl groups in which many or all the hydrogen atoms have been replaced with fluorine. The main carbon chain of these substances may have different lengths, from small molecules to long chain PFAS and polymers, and may carry a very wide variety of other functional groups. The strength of the carbon-fluorine bond is the root cause of PFAS persistence, leading to these substances remaining in the environment for decades to centuries.

Per- and polyfluoroalkyl substances are currently used in many different industrial sectors, thanks to their useful technical properties. Among others, PFAS can be used to repel water, oil and dirt from surfaces, and is characterised by a high durability under extreme conditions of temperature, pressure, radiation, and chemicals. PFAS also present electrical and thermal insulation properties.

The main features of the restriction proposal

According to the authorities that submitted the proposal, around 4.4 million tons of PFAS would end up in the environment over the next 30 years in the case of no action. Ban would refer to manufacture, placing on the market and use as such, as constituent in other substances or in mixture as well as in articles.

Two options for restriction have been considered, a full ban or specific derogations for certain industries, based on the analyses of alternatives, efforts put in place for switching to them, and socio-economic considerations. The ban would be effective above a set concentration limit; a transition period of 18 months should occur between final adoption and entry into force. Use-specific, time-limited derogation might refer, for example, to a 5-year period in the case of food contact materials for industrial food and feed production (as alternatives are already under development, but are not yet available to entry into force), or to a 12 years for implantable medical devices (for which identification, development and certification of alternatives is still needed).

During the public consultation phase, comments were received from more than 4,400 organisations, companies and individuals, to be reviewed by both the RAC and SEAC committees and the five proposing countries. Sweden, Germany and Japan are the countries that contributed the higher number of comments, well in advance of Belgium, China, Italy and the US. Companies provided more than the half of the comments (58,7%), followed by individuals (27,3%), and industrial or trade associations (9,8%). The full list of entities participating to the consultation is available at the consultation webpage.

EFPIA response to ECHA’s consultation

The European Federation of Pharmaceutical Industries and Associations (EFPIA) contributed to the consultation with a detailed document. Another joint ISPE-EFPIA document particularly addressed the use of fluoropolymers and fluoroelastomers in medicinal product manufacturing facilities.

While we support the need to restrict certain PFAS, we need to find the right approach to ensure the continued manufacturing and availability of medicines in Europe. A total ban would see medicines’ manufacturing in the EU grind to a halt in under three years. It would also jeopardise the production of all pharmaceutical substances in Europe and would conflict with the EU’s strategy of reducing dependency on nations outside of the EEA in the event of shortages or pandemics.”, said EFPIA’s director general, Nathalie Moll.

EFPIA’s consultation documents highlights the many different uses of PFAS in the pharmaceutical industry, ranging from active pharmaceutical ingredients (API) falling within the definition of PFAS used in the proposal, to building blocks and raw materials used within chemical synthesis of PFAS and non-PFAS medicines. Other reagents and equipment might also fall within the scope of the ban, as well as packaging materials or combination products such as pre-filled syringes. The ban would also affect the manufacturing process, where PFAS materials are used in a wide variety of applications.

It might thus result in the disappearance from the market of a large number of important medicines, warns EFPIA, due to the unavailability of replacement materials, and the time required to obtain regulatory re-approval of alternatives. The supply chain of pharmaceuticals would be also impacted at many stages, thus possibly exacerbating shortages.

In its analysis, EFPIA highlights how some PFAS are considered of low concern by the OECD, and in particular “those used in actual medicines have no or low identified risk through medicines risk benefit or environmental risk assessments”.

A patient access impact analysis was also jointly developed by the involved industrial associations (AESGP, EFCG, EFPIA, Medicines for Europe and Vaccines Europe), showing that the current proposal would lead to at least 47,677 global marketing authorisations being affected by the ban. More than 600 medicines from the WHO Essential Medicines List would be at risk; restrictions would greatly impact also the European Member State’s “Critical Medicines lists”.

EFPIA submitted also a socio-economic assessment of the proposal, according to which a broad restriction of PFAS used in the production of human medicines would have disproportionate negative impacts on the European economy and society. “Without additional derogations, the entire pharmaceutical industry would no longer be able to manufacture active pharmaceutical ingredients (APIs) (whether classified as PFAS or non-PFAS APIs) or associated medicinal products in the EEA”, writes EFPIA, resulting in APIs production to necessarily move out of the European Economic Area.

The position of the medical device sector

MedTech Europe also published a position paper on the PFAS restriction proposal and called fora realistic transition pathway to non-PFAS alternatives that are both reliable and feasible for medical technologies (including their manufacturing and supply chain) to avoid shortages of medical technologies for patients and practitioners”.

The position paper presents many PFAS use cases in the field of medical devices, together with the criticalities posed by the proposed transition. In particular, broad derogations should be considered to allow sufficient time to first “identify all PFAS uses in medical technologies and to subsequently move to alternatives where these are proven to be technically viable, available besides in conformity with the sector-specific MD and IVD Regulations so as fit for the intended purpose”. In this case too, the need to manage complex supply chains would require a realistic timeline in order to address dependencies, and long development timelines and steps to ensure compliance with the sectorial legislation.


Trends for the future of the pharmaceutical manufacturing

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

By Giuliana Miglierini

The technological evolution of pharmaceutical manufacturing towards the full implementation of the Industry 4.0 paradigm is rapidly advancing. Digitalisation of productions is supported by the wide spread of automation, devices connected to the Internet of Things, and machine learning algorithms able to keep entire processes under control. Looking at pharmaceutical development, new types of treatments are emerging, also requiring a retuning of current approaches. Results from a survey among experts and industry insiders (56 respondents from 13 different countries) run by Connect in Pharma show new challenges are to be faced in the incoming years by the pharmaceutical industry in order to maintain its market position.

The combined value of the global pharmaceutical market in 2022 is estimated to be approx $650 billion. The main component reflects pharmaceutical manufacturing (US$ 526 billion in 2022, data Insight Slice), while the global pharmaceutical packaging market value is roughly US$131 billion (data Fact.MR).

Many different factors supporting the transformation of pharmaceutical manufacturing have been identified by Connect in Pharma, ranging from ageing of population to Covid19 and Ukraine crisis, to climate change and pressures on energy costs, up to the shortage of healthcare professionals. The final conclusions and opportunities identified by the report indicate new partnerships and collaborations (mainly with startups, and small and medium-sized companies) will remain fundamental to support competitiveness, together with growing investments in tech-driven innovations. Involvement of patients and healthcare professionals in identifying unmet needs and optimal solutions is another item to be considered in order to increase adherence to therapy, suggests the report.

Digitalisation still waiting to full exploit its potential

Innovation in automation and digitalisation of processes has been introduced in the pharmaceutical sector at a slower pace compared to other industrial sectors, due to its higher regulatory barriers. About one third (28%) of respondents to the survey indicated their companies are developing artificial intelligence (AI) or other digital tools for application in the manufacturing and packaging process. The main drivers towards the implementation of such systems are more efficient data collection, reduction of manufacturing down times and human errors, and the use of machine learning to support continuous manufacturing. Better workflow integration and anticounterfeiting, and the ability to share supply chain data with regulators are also relevant. These are all objectives that would need to provide new specific training to the workforce, e.g. on AI or tools for augmented reality.

One of the main barriers that, according to the report, is still slowing down the full potential of AI and digitalisation in the pharmaceutical industry is represented by the need to comply to regulations, including data integrity and security. The human factor may also prove relevant, as many people (including top management) may be reluctant to accept this change in technology. The availability of data scientists with a deep knowledge of the pharmaceutical sector is another critical point to be addressed.

Advances in drug delivery technologies

Connect in Pharma’s report also shed light on some drug delivery technologies that, despite not being an absolute novelty, are gaining relevance for the development of new products and treatments.

The moving of pharmaceutical pipelines towards a continuously increasing number of new biologic / biosimilar products, including mRNA-based and gene therapies, requires the availability of manufacturing and packaging capacities able to accommodate the specific needs of such often very unstable macromolecules. New drug delivery systems have been developed in recent years to provide answers to this need, among which is inhalation technology.

Dry powder inhalers and nasal delivery devices are the preferred formulations for the 50% of respondents to the survey that indicated actions are ongoing to develop new products using inhalation technologies. According to the report, these devices might prove particularly useful to deliver drugs that need to rapidly pass the blood-brain barrier in order to become effective, as well as for the delivery of vaccines. Fast absorption and higher bioavailability compared to other routes of administration are other elements of interest for inhalation technologies, which is also believed to be able to contribute to the reduction of carbon footprint.

Once again, the regulatory environment resulting from the entry into force of the EU Medical Devices Regulation (especially for drug-device combination products), together with the need to demonstrate patient safety and satisfactory bioavailability of these devices, are among the main barriers to their development, says the report. Inhalation technologies may also give rise to a new generation of delivery devices connected to the Internet of Medical Things (IoMT).

Another major trend identified by Connect in Pharma refers to the development of new drug delivery systems for injectable medicines (50% of respondents). This area is greatly impacted by the entry into force of the revised Annex 1 to GMPs, on 25 August 2023, that will increase the requirements for aseptic manufacturing. According to the report, main areas of innovation in this field may include new devices for injectable drug delivery, namely targeted to diabetes (the leading area of innovation), intravitreal ocular injection, autoimmune diseases, oncology, respiratory therapy, and pain management.

Connected devices

Diabetes is a highly relevant field of innovation also with respect to the implementation of connected devices, those embedded sensors and electronics allow for the real-time collection of data on self-administration of the therapy by patients, and their forwarding to health professionals. AI algorithms further enhance the potential of connected devices delivering diabetes treatments, as they support the real-time monitoring of insulin concentration in blood, and the consequent level of insulin delivered by the device. According to Connect in Pharma, other positive characteristics arising from the use of connected devices refer to the possible increase of patient adherence and compliance to treatment, resulting in improved patient outcomes and more personalised treatment.

Regulatory barriers are once again a main burden to the wider spread of connected devices, says the report, due for instance to the ultimate control over the sharing of data, and the choice if to implement single-use or reusable devices. Manufacturing costs, cybersecurity, and patient hesitancy are other hurdles identified by respondents to the survey.

The challenges for sustainability

The green policies put in place especially in the EU are calling industry to revise its processes and products to decrease their environmental impact, improve sustainability of manufacturing and packaging processes, so to eventually meet the climate targets fixed for 2050. According to the report, the global healthcare sector would be responsible for 4.4% of global net emissions. Connect in Pharma’s survey indicates 66% of involved companies are working to implement more sustainable practices. These may include for example the use of recycled materials in secondary packaging, the implementation of energy efficient technologies, and the development of more ecofriendly drug delivery systems. Costs have been identified as the main barrier to transition, together with the lack of common definitions. According to some of the experts, a wider use of data to monitor manufacturing systems and processes may help in improving the overall efficiency and in lowering the carbon footprint. Transport, for example, has a great impact on the sustainability of packaging.


ECA’s guide to compliant equipment design

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

By Giuliana Miglierini

The legislative evolution of the last decades emphasised requirements for equipment used in pharmaceutical productions. This is even more true with the entry into force of the new Annex 1 to the GMPs, characterised by many new requirements impacting on different manufacturing processes (i.e. production of water for injection, sterilisation, Form-Fill-Seal and Blow-Fill-Seal technologies, single use systems, lyophilisation, etc.).

Each pharmaceutical process requires the careful design of the needed equipment in order to provide the expected efficiency and performance. Furthermore, some equipment may be used for different industrial applications (e.g. pharmaceutical, cosmetic or food), thus needing a fine tuning to reflect relevant requirements. In pharmaceutical manufacturing, a further step of complexity may be represented by the need to handle highly potent active pharmaceutical ingredients, requiring isolators to segregate production, etc.

To facilitate the correct design of equipment compliant to GMPs, a new guidance document has been published by the ECA Foundation. The document was initially drafted in German by a task force of experts in pharmaceutical technology and engineering and published by Concept Heidelberg, and it has now been translated in English

Elements relevant to reach compliance

The first part of the document discusses general requirements that should always be part of the design of GMP-compliant equipment. Four different points of attention are listed: the equipment must not adversely affect the product quality, it must be easy to clean, it must comply with applicable technical rules, and it must be fit for its intended use.

As for the first point, “The question is rather what is tolerable without adversely affecting the product quality”, states the guidance. Avoidance of contamination and cross-contamination are the main goals of cleaning activities, both for sterile and non-sterile medicinal products. There are several issues to be taken in mind from this perspective, including the presence of endotoxins, sealing points, the efficiency of cleaning-in-place (CIP) processes, or the presence of unreachable dead leg areas. According to the guidance, the 3D/6D rule for the prevention of dead legs in water systems often used for specification would not always be correctly applied, due to some confusion in terminology. Official GMPs are also deemed “very vague”, as they are not drafted by engineers and apply to an extremely wide range of different equipment and processes. “Consequently, the question is, which technical rules have to be followed or where the actual state of the art can be looked up”, says the document. Many different references are possible, from pharmacopeia monographs and regulatory guidelines, to ISO standards, and other documents published by international professional bodies.

Qualification and calibration of equipment should always be targeted to the specific product, as it is an essential in proving compliance to the intended use. Regulatory compliance of submitted documentation is not less important, and it greatly impacts on change control and implementation of new productive technologies.

Risk analysis (RA) is the tool introduced in 2005 by ICH Q9 to evaluate all items which may impact on the design of productive processes and related equipment. There is no standard methodology to run risk analysis, the choice depends on the process/product under assessment. According to the guidance, RA can be performed both from the perspective of the product and the equipment, the latter being also considered a GMP risk analysis.

Design and choice of materials

Materials (and coating materials where relevant) used to build pharmaceutical equipment should be completely inert. Pharmaceutical equipment must comply with the EC Directive on Machinery 2006/42/EC and DIN EN ISO 14159. The ECA guidance discusses material selection (plastics or stainless steel); hygienic system design is also addressed by many different guidelines, e.g. those published by the European Hygienic Engineering and Design Group (EHEDG). An important item to consider is service life considerations for the materials used (EHEDG Document 32), as well as their chemical-physical characteristics and materials pairing.

Particularly critical are process contact surfaces, as they may impact product quality. Establishment of specific requirements is thus needed. The guidance focuses its attention on austenitic stainless steels (i.e. CrNiMo steels 1.4404 and 1.4435). The main elements to be assessed are the risk of corrosion, the risk of contamination of the product or process medium and the cleanability of the metallic surface. Topography, morphology and energy level are the main characteristics to be used to describe surfaces, addressing respectively the geometric shape, chemical composition and energy required per unit area to increase the size of the surface. The guidance provides a detailed discussion of all different aspects of surface treatment methods, and the hygienic design of open and closed equipment. Other sections discuss the optimal design of pipework and fittings, connections, welding and seam control. Detailed information is also provided on equipment of electrical engineering, measurement and control technology, as well as the process control technology (PCT) measurement and control functions.

A highly critical area within a pharmaceutical facility are cleanrooms, for which the design of the equipment and the choice of materials is even more stringent. Elements to be considered include stability/statics as concerns dynamic loads, smoothness of the floor, tightness of external façades and of enclosing surfaces of cleanrooms. Smooth nonporous surfaces are required, together with avoidance of molecular contamination, resistance to the intended cleaning or disinfection agents and the cleaning procedure, simple and tight integration of various fittings, efficient and rapid implementation of subsequent functional and technical changes. The ECA guidance document goes deeper into relevant requirements for all elements that are part of the design of a compliant cleanroom.

Documentation and automation

User requirement specifications (URS) are the key document to demonstrate equipment is fit for the intended use, as stated by GMP Annex 15 (2015). The ECA guidance suggests translating the URS in a technical version to be submitted to the potential equipment supplier, so to ensure the design would reflect product and quality-relevant requirements, being thus GMP compliant.

The management of documentation along the design life cycle of a new piece of equipment is also taken into consideration, with the different construction phases identified according to Good engineering practices (GEP): conceptual design, basic design/engineering, and detailed design/engineering.

The extensive use of data to monitor and document pharmaceutical manufacturing process represents another area of great attention. Requirements relevant to the design of validated computerised systems, data protection and data integrity must be kept in mind. ECA’s experts highlight the need to carefully delimitate areas subject to validation and their extention, particularly with reference to automated systems. Differences between qualification and validation of automated systems are also addressed, including equipment that might either be defined as “computerised” or “automated” system. Regulatory reference for validation is GAMP 5, while qualification refers to Annex 15.