risk-based approach Archives - European Industrial Pharmacists Group (EIPG)

Patient involvement in the development, regulation and safe use of medicines


by Giuliana Miglierini The Council for International Organizations of Medical Sciences (CIOMS) has published the CIOMS report on “Patient involvement in the development, regulation and safe use of medicines”. The report marks an important step forward towards a harmonised approach to Read more

Webinar: Implementation of Contamination Control Strategy Using the ECA template


The next EIPG webinar will be held in conjunction with PIER and University College Cork on Friday 21st of October 2022 (16.00 CEST), on the implementation of Contamination Control Strategy (CCS) using the ECA* template. This is the second Read more

Real-world evidence for regulatory decision-making


by Giuliana Miglierini Digitalisation is rapidly advancing also in the regulatory field, as a tool to improve the efficiency and accuracy of processes used for the generation and use of data to inform the regulatory decision-making. To this instance, real-world Read more

IVD regulation in force: new MDCG guidelines and criticalities for innovation in diagnostics

, , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

The new regulation on in vitro diagnostic medical devices (IVDR, Regulation (EU) 2017/746) entered into force on 26 May 2022. The new rules define a completely renewed framework for the development, validation and use of these important tools supporting the diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, in line with technological advances and progress in medical science. “Diagnostic medical devices are key for lifesaving and innovative healthcare solutions. Today we are marking a big step forward for the patients and the diagnostics industry in the EU. The COVID-19 pandemic has underlined the importance of accurate and safe diagnostics, and having stronger rules in place is a key element in ensuring this is the case for EU patients.”, said Stella Kyriakides, Commissioner for Health and Food Safety

The European Commission also published a Q&A document to facilitate the comprehension of the new framework.

The main contents of the IVDR

The risk-based approach for the classification and development of in vitro diagnostics is at the core of the IVDR. There are four different classes of IVDs: class A (low individual risk and low public health risk), class B (moderate individual risk and/or low public health risk), class C (high individual risk and/or moderate public health risk) and class D (high individual risk and high public health risk). The assessment of the quality, safety and performance of IVDs by independent notified bodies shall be based on more detailed and stringent rules. Higher-risk categories will also be subject to further assessment by newly created scientific bodies acting under the auspices of the European Commission, such as the expert panels and the network of EU reference laboratories. Twelve expert panels have been established up to now.

Each single IVD will be associated to a Unique Device Identifier (UDI), so to facilitate its traceability along the entire life cycle. The identifier will also serve to locate the relevant information about a diagnostic marketed in the EU within the European database of medical devices (EUDAMED), where also a summary of safety and performance will be publicly available for medium- and high-risk devices. The database will also contain information about all economic operators and provide a repository for the certificates issued by notified bodies.

The new regulation strengthened the framework for post-marketing surveillance of IVDs, asking for a closer coordination of the vigilance activities by all member countries. The IVDR also introduced reinforced rules on clinical evidence and performance evaluation, including an EU-wide coordinated procedure for authorising multi-centre performance studies, and a specific regime for devices manufactured and used in the same health institution (in-house devices).

Difficulties in the timely implementation of the (EU) 2017/746 regulation may still be possible due to the lack of a sufficient number of notified bodies, as only seven have been designated up to now, established in only four countries (Germany, France, the Netherlands and Slovakia), while eleven other applications were pending in May 2022. To solve this issue, Regulation (EU) 2022/112 was adopted. A transition period up to May 2025 applies to devices that require a notified body certificate already under the previous Directive (around 8%, vs about 80% according to the IVDR); other classes of IVDs benefit of different transition periods (May 2025 for class D, May 2026 for class C and May 2027 for class B and A sterile).

Q&As on the interface with the Clinical Trial regulation and UDI

The Medical Devices Coordination Group (MDCG) published a Q&A document (MDCG 2022-10) to provide guidance on the interface between Regulation (EU) 536/2014 on clinical trials for medicinal products for human use (CTR) and the IVDR.

The guideline addresses the requirements for assays used in clinical trials, that may include IVDs carrying a CE mark for the intended purpose, IVDs developed in-house and devices for performance studies. Only the devices falling on the definition of an IVD with regards to their intended purpose are subject to the IVD legislation. The guideline also provides suggestions on assays likely to be considered IVDs, as they are used for medical management decisions of trial subjects within the trial.

Another Q&A guideline (MDCG 2022-7) provides clarifications on how to apply the Unique Device Identification system to both medical devices and in vitro diagnostics.

Topics covered by the document include the need for a new UDI-DI assignment in case the number of items in a device package changes or for single-use reprocessed devices, the requirement for economic operators to maintain a registry of all UDIs of the devices which they have supplied or with which they have been supplied, or the requirement of a new UDI-DI for substance-based medical devices, in case of formula quantity changes or additional claims.

The MDCG also addressed the assignment and use of the Basic UDI-DI and the determination of the ‘grouping’ for design or manufacturing characteristics, including the case of devices comprising a patient and a physician facing module, and the contents of the Declaration of Conformity (DoC). Labelling is also addressed, as well as rules for systems and procedure packs (SPPs) and configurable devices, as well as those applying to retail point of sale, promotional packs and marketing related samples.

The impact of the IVDR on innovation

The issues linked to the IVDR implementation and their impact on innovation and diagnostic laboratories, including the development and use of in-house devices, have been analysed by the BioMed Alliance In Vitro Diagnostics Task Force, and published in HemaSphere.

The Task Force identified two main challenges to be faced by the academic diagnostic sector. The first one impacts on the possibility to use in-house IVDs, based on the demonstration that no equivalent CE-IVD kit is present on the market or when the specific needs cannot be met at the appropriate level of performance by an equivalent CE-IVD. The strict exemptions applying to in-house IVDs (e.g. prohibition of transferring to other legal entities, compliance with EN ISO 15189 and justification of use, etc.) may impact also on the potential for innovation in the diagnostic sector.

The second challenge refers to the not so clearly defined boundaries between CE marked-IVDs, modified CE-IVDs, Research Use Only (RUO) tests, and in-house IVDs. The Task Force recalls the immediate applicability of the General Safety and Performance Requirements specified in Annex I of the IVDR, as they have not been included in the approved amendment of the implementation timeline.

Furthermore, only tests meeting economic viability may in the future be transferred from the academia to the industry, while rare or complex tests would probably remain excluded. According to the paper, the cost of diagnostics shall likely increase, and the academa should carefully consider how to support further research into rare or complex diagnostics in order to ensure their availability to patients.

Following the results of a survey among medical societies on current diagnostic practices, several suggestions are made to better support the implementation of the IVDR, namely by mean of the availability of diagnostic equivalents of the European Reference Networks for rare diseases and a concerted action involving all stakeholders. A joint biomarker-to-test pipeline between the IVD industry and research/academic labs would also be useful to facilitate the initial development and local application of innovative diagnostics within healthcare institutions or diagnostic reference networks with specific expertise, to then transfer them to manufacturers above a certain production volume.


Artificial intelligence in medicine regulation

, , , , , , , , , , , ,

The International Coalition of Medicines Regulatory Authorities (ICMRA) sets out recommendations to help regulators to address the challenges that the use of artificial intelligence (AI) poses for global medicines regulation, in a report published on 16 August 2021.

AI includes various technologies (such as statistical models, diverse algorithms and self-modifying systems) that are increasingly being applied across all stages of a medicine’s lifecycle: from preclinical development to clinical trial data recording and analysis, to pharmacovigilance and clinical use optimisation. This range of applications brings with it regulatory challenges, including the transparency of algorithms and their meaning, as well as the risks of AI failures and the wider impact these would have on AI uptake in medicine development and patients’ health.

The report identifies key issues linked to the regulation of future therapies using AI and makes specific recommendations for regulators and stakeholders involved in medicine development to foster the uptake of AI. Some of the main findings and recommendations include:

  • Regulators may need to apply a risk-based approach to assessing and regulating AI, which could be informed through exchange and collaboration in ICMRA;
  • Sponsors, developers and pharmaceutical companies should establish strengthened governance structures to oversee algorithms and AI deployments that are closely linked to the benefit/risk of a medicinal product;
  • Regulatory guidelines for AI development, validation and use with medicinal products should be developed in areas such as data provenance, reliability, transparency and understandability, pharmacovigilance, and real-world monitoring of patient functioning.

The report is based on a horizon-scanning exercise in AI, conducted by the ICMRA Informal Network for Innovation working group and led by EMA. The goal of this network is to identify challenging topics for medicine regulators, to explore the suitability of existing regulatory frameworks and to develop recommendations to adapt regulatory systems in order to facilitate safe and timely access to innovative medicines.

The implementation of the recommendations will be discussed by ICMRA members in the coming months.

Source: EMA