safety Archives - European Industrial Pharmacists Group (EIPG)

Patient involvement in the development, regulation and safe use of medicines


by Giuliana Miglierini The Council for International Organizations of Medical Sciences (CIOMS) has published the CIOMS report on “Patient involvement in the development, regulation and safe use of medicines”. The report marks an important step forward towards a harmonised approach to Read more

Webinar: Implementation of Contamination Control Strategy Using the ECA template


The next EIPG webinar will be held in conjunction with PIER and University College Cork on Friday 21st of October 2022 (16.00 CEST), on the implementation of Contamination Control Strategy (CCS) using the ECA* template. This is the second Read more

Real-world evidence for regulatory decision-making


by Giuliana Miglierini Digitalisation is rapidly advancing also in the regulatory field, as a tool to improve the efficiency and accuracy of processes used for the generation and use of data to inform the regulatory decision-making. To this instance, real-world Read more

IVD regulation in force: new MDCG guidelines and criticalities for innovation in diagnostics

, , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

The new regulation on in vitro diagnostic medical devices (IVDR, Regulation (EU) 2017/746) entered into force on 26 May 2022. The new rules define a completely renewed framework for the development, validation and use of these important tools supporting the diagnosis, prevention, monitoring, prediction, prognosis, treatment or alleviation of a disease, in line with technological advances and progress in medical science. “Diagnostic medical devices are key for lifesaving and innovative healthcare solutions. Today we are marking a big step forward for the patients and the diagnostics industry in the EU. The COVID-19 pandemic has underlined the importance of accurate and safe diagnostics, and having stronger rules in place is a key element in ensuring this is the case for EU patients.”, said Stella Kyriakides, Commissioner for Health and Food Safety

The European Commission also published a Q&A document to facilitate the comprehension of the new framework.

The main contents of the IVDR

The risk-based approach for the classification and development of in vitro diagnostics is at the core of the IVDR. There are four different classes of IVDs: class A (low individual risk and low public health risk), class B (moderate individual risk and/or low public health risk), class C (high individual risk and/or moderate public health risk) and class D (high individual risk and high public health risk). The assessment of the quality, safety and performance of IVDs by independent notified bodies shall be based on more detailed and stringent rules. Higher-risk categories will also be subject to further assessment by newly created scientific bodies acting under the auspices of the European Commission, such as the expert panels and the network of EU reference laboratories. Twelve expert panels have been established up to now.

Each single IVD will be associated to a Unique Device Identifier (UDI), so to facilitate its traceability along the entire life cycle. The identifier will also serve to locate the relevant information about a diagnostic marketed in the EU within the European database of medical devices (EUDAMED), where also a summary of safety and performance will be publicly available for medium- and high-risk devices. The database will also contain information about all economic operators and provide a repository for the certificates issued by notified bodies.

The new regulation strengthened the framework for post-marketing surveillance of IVDs, asking for a closer coordination of the vigilance activities by all member countries. The IVDR also introduced reinforced rules on clinical evidence and performance evaluation, including an EU-wide coordinated procedure for authorising multi-centre performance studies, and a specific regime for devices manufactured and used in the same health institution (in-house devices).

Difficulties in the timely implementation of the (EU) 2017/746 regulation may still be possible due to the lack of a sufficient number of notified bodies, as only seven have been designated up to now, established in only four countries (Germany, France, the Netherlands and Slovakia), while eleven other applications were pending in May 2022. To solve this issue, Regulation (EU) 2022/112 was adopted. A transition period up to May 2025 applies to devices that require a notified body certificate already under the previous Directive (around 8%, vs about 80% according to the IVDR); other classes of IVDs benefit of different transition periods (May 2025 for class D, May 2026 for class C and May 2027 for class B and A sterile).

Q&As on the interface with the Clinical Trial regulation and UDI

The Medical Devices Coordination Group (MDCG) published a Q&A document (MDCG 2022-10) to provide guidance on the interface between Regulation (EU) 536/2014 on clinical trials for medicinal products for human use (CTR) and the IVDR.

The guideline addresses the requirements for assays used in clinical trials, that may include IVDs carrying a CE mark for the intended purpose, IVDs developed in-house and devices for performance studies. Only the devices falling on the definition of an IVD with regards to their intended purpose are subject to the IVD legislation. The guideline also provides suggestions on assays likely to be considered IVDs, as they are used for medical management decisions of trial subjects within the trial.

Another Q&A guideline (MDCG 2022-7) provides clarifications on how to apply the Unique Device Identification system to both medical devices and in vitro diagnostics.

Topics covered by the document include the need for a new UDI-DI assignment in case the number of items in a device package changes or for single-use reprocessed devices, the requirement for economic operators to maintain a registry of all UDIs of the devices which they have supplied or with which they have been supplied, or the requirement of a new UDI-DI for substance-based medical devices, in case of formula quantity changes or additional claims.

The MDCG also addressed the assignment and use of the Basic UDI-DI and the determination of the ‘grouping’ for design or manufacturing characteristics, including the case of devices comprising a patient and a physician facing module, and the contents of the Declaration of Conformity (DoC). Labelling is also addressed, as well as rules for systems and procedure packs (SPPs) and configurable devices, as well as those applying to retail point of sale, promotional packs and marketing related samples.

The impact of the IVDR on innovation

The issues linked to the IVDR implementation and their impact on innovation and diagnostic laboratories, including the development and use of in-house devices, have been analysed by the BioMed Alliance In Vitro Diagnostics Task Force, and published in HemaSphere.

The Task Force identified two main challenges to be faced by the academic diagnostic sector. The first one impacts on the possibility to use in-house IVDs, based on the demonstration that no equivalent CE-IVD kit is present on the market or when the specific needs cannot be met at the appropriate level of performance by an equivalent CE-IVD. The strict exemptions applying to in-house IVDs (e.g. prohibition of transferring to other legal entities, compliance with EN ISO 15189 and justification of use, etc.) may impact also on the potential for innovation in the diagnostic sector.

The second challenge refers to the not so clearly defined boundaries between CE marked-IVDs, modified CE-IVDs, Research Use Only (RUO) tests, and in-house IVDs. The Task Force recalls the immediate applicability of the General Safety and Performance Requirements specified in Annex I of the IVDR, as they have not been included in the approved amendment of the implementation timeline.

Furthermore, only tests meeting economic viability may in the future be transferred from the academia to the industry, while rare or complex tests would probably remain excluded. According to the paper, the cost of diagnostics shall likely increase, and the academa should carefully consider how to support further research into rare or complex diagnostics in order to ensure their availability to patients.

Following the results of a survey among medical societies on current diagnostic practices, several suggestions are made to better support the implementation of the IVDR, namely by mean of the availability of diagnostic equivalents of the European Reference Networks for rare diseases and a concerted action involving all stakeholders. A joint biomarker-to-test pipeline between the IVD industry and research/academic labs would also be useful to facilitate the initial development and local application of innovative diagnostics within healthcare institutions or diagnostic reference networks with specific expertise, to then transfer them to manufacturers above a certain production volume.


FAT and SAT, a critical step for the introduction of new equipment

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

There are two key moments to be faced to introduce a new piece of equipment in a pharmaceutical plant: a factory acceptance testing (FAT), usually performed by its manufacturer to verify the new equipment meets its intended purpose, prior to approve it for delivery and once arrived at its final destination and installed, a site acceptance testing (SAT) run by the purchasing company and is part of the commissioning activity.

According to an article published in Outsourced Pharma, the commissioning of a new piece of equipment poses many challenges, and criticalities needs to be considered both from the business and regulatory point of view. Pharmaceutical plants are very complex and often customised upon the specific business needs, and the delivery of a new equipment requires the interaction of many different parties, both internal and external to the purchasing company. FAT, SAT and commissioning activities require a careful planning and detailed responsibilities for all participating parties to be included within the Commissioning and Qualification Plan (CQV plan). A possible responsibility matrix is suggested by the authors to provide clarity and ensures ownership of activities.

FAT, assessing the equipment at the manufacturer site

FAT and SAT testing involve the visual inspection of the equipment and the verification of its static and/or dynamic functioning, in order to assess the actual correspondence to the user requirement specifications (URS). While FATs are usually based on simulations of the equipment’s operating environment, SAT testing occurs at the final site after installation, thus it reflects the real operating conditions and environment in order to support qualification.

There are many different elements to be considered during FAT testing, including for example verification of the existing site drainage, piping, or room dimensions, or the position of the handle for accessibility, as well as software design specification, interface, and device integration.

The FAT exercise is always highly recommended, as it is essential to solve in advance (before shipment to the final destination) any error or malfunctioning of the equipment, that otherwise might occur at the purchasing company’s site. This results in the optimisation of the delivery and commissioning process, with important savings in terms of both time and costs for the purchasing company. To ensure for the transparency of FAT testing, the entire procedure (that requires usually 1-3 days, depending on the complexity of the equipment to be verified) is usually performed in the presence of a third party inspector and customer representative.

A comprehensive set of documentation should be always available to support FAT, including URS, drawings, checklists and procedures, calibrations and certifications, data sheets, references, etc. Raw data acquired during FAT are transmitted to the customer for analysis and validation. FAT should take into consideration all aspects relevant to the evaluation of the safety and functionality of the equipment and its compliance to URS, GMPs and data integrity. To this regard, it is also important for the engineering team called to run the new equipment at its final location to learn and share knowledge with the manufacturer along the entire commissioning process, so to increase the first-hand direct experience. According to the article, this is also critical to authorise the shipment of the equipment to the final destination, a step that should always be performed by an authorised, trained, and approved subject matter expert.

 SAT acceptance testing

All criticalities emerged during the FAT exercise are then checked again at the final site, after installation and verification; additional test cases may also be added to the SAT protocol to check for potential failure modes. SAT testing is performed once all connections between the new equipment and other machines/softwares are in place, under the real operating parameters, and may be witnessed by a representative of the equipment’s manufacturer.

Results from SATs may thus differ from those obtained from the FAT previously run by the manufacturer. From the regulatory point of view, SAT testing is a key element to demonstrate the compliance of the equipment to GMP requirements and to support the overall quality and safety of pharmaceutical productions. In this case too, many are the possible elements to be inspected and verified, including interlocks, ventilation, internal box pressure, electrical/hydraulic connections and safety systems, visual checks of components, training of the operators, etc.

A plan for each testing phase

FAT planning begins at the very moment of the purchasing company placing the order for the new equipment, and it has to reflect all URS to be checked for acceptability of the manufactured apparatus. This step in the design is critical and calls for a strict and positive communication between the manufacturer and its customers, a key point to take into consideration all elements that should enter the project.

All identified items and procedures to be challenged during FAT and SAT testing are usually addressed within the CQV plan, that connects the design phase to user requirements specifications and the other elements impacting the commissioning and qualification processes (i.e. system impact assessment, design specification, functional risk assessment, hardware / software specifications, Installation / Operational / Performance Qualification), including deviations and change management. The plan specific to SAT testing should include the scope, test specifications and logs, a test summary, the Commissioning report and the final Certificate of Acceptance.

Transparency and a robust statistical approach should represent main targets along the entire commissioning and validation procedure, that may be run with the assistance of external consultants. All activities that shall enter the regulatory dossiers should always be justified and documented, also under the perspective of data integrity. The Outsourced Pharma’s article also suggests paying a particular attention to controls on data provided by the manufacturer in the case a risk-based leveraging is applied.



The new guideline on combination products between medicines and medical devices

, , , , , , , , , , , , , , , , , , , , , , , , , , ,

by Giuliana Miglierini

The new “Guideline on quality documentation for medicinal products when used with a medical device” (EMA/CHMP/QWP/BWP/259165/2019), adopted by the European Medicines Agency in July 2021, will come into force starting 1st January 2022.

The first draft of the guideline was presented in May 2019; according to EMA, the document aims to solve the often observed issues of inconsistent and/or incomplete data submitted to competent authorities. It also considers the amendment to Annex I of Directive 2001/83/EC introduced by Article 117 of the new Medical Devices Regulation ((EU)2017/745, MDR).

A Questions and Answers document to support in the implementation of the MDR and In Vitro Diagnostic Medical Devices Regulations ((EU) 2017/746) was also published by EMA in June 2021.

Three different combinations with medical devices

The guideline applies to the product-specific quality aspects of a medical device/device part, that may have an impact on the quality, safety and/or efficacy of the associated medicinal product, as defined by a specific risk assessment. The submitted documentation is part of the Quality part of a marketing authorisation dossier. Makers has also to prove the conformity of the device/device part to MDR’s requirements by mean of a EU Declaration of Conformity or CE certification released by the Notified Body that assessed the device.

The products covered by the new guideline include integral products made up of an integral and not reusable combination of the medical device/device part and the medicinal product (where the action of the medicinal product is principal), medical devices placed on the market co-packaged with a medicinal product, and referenced medicinal products to be used in conjunction with a specific medical device described in the product information (SmPC and/or package leaflet) and obtained separately by the user. The classification in one of the above mentioned categories of medicine/device combination impacts the information that should be submitted to competent authorities.

The guideline applies also to medicinal products intended to be used with a Class I medical devices, with electromechanical devices (including active implantable devices), electronic add-ons and digital elements of devices (if expected to impact the benefit-risk assessment of the medicinal product from a quality perspective). Combined advanced therapy products defined under Article 2(1)(d) of the ATMP Regulation fall out of the scope of Article 117, as well as veterinary products, in-vitro diagnostic devices (including companion diagnostics), system and procedure packs regulated under Article 22 of the MDR.

Examples of integral products include medicinal products with an embedded sensor performing an ancillary action, single-use prefilled syringes, pens or injectors, drug-releasing intrauterine devices or pre-assembled, non-reusable applicators for vaginal tablets, dry powder inhalers and preassembled, ready-to-use pressurised metered dose inhalers, implants containing medicinal products whose primary purpose is to release the medicinal product. For this type of products, the safety and performance of the device/device part has to reflect the relevant General Safety and Performance Requirements (GSPRs) described in Annex I of the MDR.

Examples of co-packaged or specifically referenced medical devices include spoons and syringes used for oral administration, injectors needles, refillable or reusable pens/injectors, dry powder inhalers and metered dose inhalers, nebulisers and vaporisers and single use or reusable pumps for medicinal product delivery. These two categories of products should comply with the requirements of the applicable medical device legal framework.

The approach to the overall product quality

The discussion of the quality of the device/device part on the Quality Target Product Profile (QTPP), Critical Quality Attributes (CQA) and overall control strategy of the medicinal product has to be included in the regulatory dossier.

More specifically, for integral products the EU Declaration of Conformity or the relevant EU certificate issued by a Notified Body for the device/device part has to be produced. Should this not be possible, the applicant has to provide an opinion (NBO) on the conformity of the device/device part with the relevant GSPRs, issued by a Notified Body enlisted in the NANDO website.

The information provided with the authorisation dossier shall be assessed by the competent authority to determine the overall benefit/risk ratio of the medicinal product. All information relevant to the device/device part has to be submitted using the usual eCTD format. Data on preexisting combination of the device/device part with an already approved medicinal product can be provided on a case-by-case basis and needs to be adequately justified. Early scientific and/or regulatory advice can be activated in the case of particularly innovative and emerging technologies.

The guideline provides a detailed description of the information to be submitted to competent authorities in relation to each of the different types of device/medicinal products combinations.

Reference is made to Module 1 (Product Information), Module 3.2.P (Drug Product), Module 3.2.A.2 (Adventitious Agents Safety Evaluation) and Module 3.2.R (Regional Information, Medical Device). This last section includes the Notified Body Opinion for integral medicinal products in the form of a summary technical report. Usability studies should be also available in the case supporting information is not included in the dossier, and the device/device part has not been used in the intended user population before, or where other aspects of the intended use, including changes to the clinical setting or use environment, are new or different from the intended use as confirmed by the EU certificate issued by a Notified Body or NBO.

The guideline also highlights the need the device/device part should be as advanced as possible in the development process (e.g. meets relevant GSPRs) by the time pivotal clinical trials commence. Any change to the device occurred during the trials has to be described, evaluated and justified with respect to the potential impact on the quality, safety and/or efficacy of the medicinal product. The guideline also provides information on how to manage the life cycle of the integral, co-packaged or referenced medicinal products.