Nanobodies®: journey from research to commercial

UPIP-VAPI
VUB Campus Jette April 2013

Hilde Revets
Senior Research Fellow
Forward looking statements

Certain statements, beliefs and opinions in this presentation are forward-looking, which reflect the Company’s or, as appropriate, the Company’s directors’ current expectations and projections about future events. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. A multitude of factors including, but not limited to, changes in demand, competition and technology, can cause actual events, performance or results to differ significantly from any anticipated development. Forward looking statements contained in this presentation regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. As a result, the Company expressly disclaims any obligation or undertaking to release any update or revisions to any forward-looking statements in this presentation as a result of any change in expectations or any change in events, conditions, assumptions or circumstances on which these forward-looking statements are based. Neither the Company nor its advisers or representatives nor any of its or their parent or subsidiary undertakings or any such person’s officers or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does either accept any responsibility for the future accuracy of the forward-looking statements contained in this presentation or the actual occurrence of the forecasted developments. You should not place undue reliance on forward-looking statements, which speak only as of the date of this presentation.
Outline

From research to commercialization
 • The story of Ablynx

The Nanobody technology

Product pipeline and examples of clinical assets
 • anti-IL-6R to treat RA – strong efficacy and safety results in Phase II
 • anti-vWF (caplacizumab) to treat TTP
 • anti-RSV
Creating a Spin-Off Company: steps and issues involved

Commercialization via Start-up/Spin-Off Company

What do you need to create a Start-up/Spin-Off Company?

A BRIGHT IDEA

- An invention arises from university research
- A platform technology is built up
- If the technology (invention) is a platform on which could be built multiple commercial products, it can form basis for a new company
 - New business allows a researcher to be personally involved in the translation of its discoveries into products & services and see the correlation between hard work and financial reward
Creating a Spin-Off Company: steps and issues involved

- The Business Opportunity Document
 - A key marketing document that describes the business opportunity

- Development of Business Plan

- Protection and exploitation of Intellectual Property
 - Multi-layered approach (platform, drugs, formulation,…)
 - Life cycle management

- Finding investors

- Finding infrastructure

- Negotiation and legal support
In the beginning….

- Early ’90: discovery of camelid heavy-chain only antibodies at ALBI (VUB)
- Further characterization and development of the V_H platform technology
- In 1996: ALBI joins VIB
- Intensive collaboration between VIB headquarters and ALBI (VIB6) to validate the technology for potential spin-off
- Generation of IP
- Development of Business Plan
- Patent Portfolio (University/VIB)
- In 2001: ABLYNX established
- In 2002: ABLYNX incorporated (completed first financing round)
- Nanobody technology
Rapid evolution from platform to product based company

Discovery platform
- No partners
- €5M seed financing
- No products
- 10 staff
- Platform building

Discovery and early development
- 3 partners
- €70M private equity
- €85M IPO (NYSE)
- 11 R&D projects
- 1 Nanobody in clinic
- 144 staff
- Platform upscaling

Discovery and later development
- 4 partners
- > €200M equity funding
- €160M in cash from partners
- ~ 25 R&D projects
- >700 people treated
- 7 Nanobody products in clinic
- 2 clinical POC (RA)
- < 250 staff
- Commercial production

End 2001 | End 2002 | End 2007 | Today
Nanobodies – demonstrated track record

1st inhaled Nanobody successfully completes Phase I safety study

>750 patients and subjects have received Nanobodies

Two clinical POCs in RA

Clinical grade material produced up to 2,500L scale

Nanobodies have been tested in 18 countries, 4 continents
Three-pronged approach to balancing risk and reward

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boehringer Ingelheim, Novartis and Merck & Co</td>
<td>Merck Serono – Ablynx</td>
<td>Ablynx</td>
</tr>
<tr>
<td>• 11 active programmes</td>
<td>• 5 active programmes in inflammation, immunology and oncology</td>
<td>• TNFα (ozoralizumab) – Ph II*</td>
</tr>
<tr>
<td>• €113 million in cash received since 2005</td>
<td>• First Phase I expected in 2013</td>
<td>• vWF (caplacizumab) – Ph II</td>
</tr>
<tr>
<td>• BI is current shareholder (4.9%)</td>
<td>• €47 million in cash received since 2008</td>
<td>• IL-6R (ALX-0061) – Ph II</td>
</tr>
<tr>
<td> </td>
<td></td>
<td>• RANKL (ALX-0141) – Ph I</td>
</tr>
<tr>
<td> </td>
<td></td>
<td>• RSV (ALX-0171) – Ph I</td>
</tr>
</tbody>
</table>

Balancing risk and reward

€160M in non-dilutive cash from collaborators received to date

* No investment in clinical trials made to date by Ablynx
Outline

电磁 From research to commercialization
 • The story of Ablynx

电磁 The Nanobody technology

电磁 Product pipeline and examples of clinical assets
 • anti-IL-6R to treat RA – strong efficacy and safety results in Phase II
 • anti-vWF (caplacizumab) to treat TTP
 • anti-RSV
Ablynx’s Nanobodies – proven single variable domain approach

Camelidae family has both forms

Conventional antibody
- Heavy and light chains
- Both chains required for antigen binding and stability
- Large size and relatively low formatting flexibility
- Administered through injection

Heavy-chain antibody
- Only heavy chains
- Full antigen binding capacity and very stable

Ablynx’s Nanobody®
- Small (1/10 size of a mAb)
- Flexible formatting
- Highly potent, robust and stable
- Broad target applicability
- Multiple administration routes
- Ease of manufacture
- Speed of discovery
Nanobody discovery process – the power of evolution

1. Immunize llama with antigen
2. Draw blood 6–12 weeks later
3. Conventional antibodies
4. Select Nanobodies of interest
5. Manufacture in micro-organisms
6. Format Nanobody to achieve desired properties, plus half-life extension (HLE)
7. Ablynx’s Nanobody®
8. Clinical trials
9. Select Nanobodies of interest

Ablynx
The unique potential of Nanobodies ... combines the best of both worlds

- Small molecules (chemical substances)
- Conventional antibodies (biological)

- Easy manufacturing
- Stable and small
- Selective and efficient
- Low toxicity
- Broad applicability
- Flexible formatting
- Alternative delivery
- Broad applicability
- Flexible formatting
- Alternative delivery

www.ablynx.com
Outline

From research to commercialization
 • The story of Ablynx

The Nanobody technology

Product pipeline and examples of clinical assets
 • anti-IL-6R to treat RA – strong efficacy and safety results in Phase II
 • anti-vWF (caplacizumab) to treat TTP
 • anti-RSV
Pipeline – internal and funded programmes

<table>
<thead>
<tr>
<th>Therapeutic area</th>
<th>Product name</th>
<th>Target</th>
<th>Discovery</th>
<th>Pre-clinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Filing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haematology</td>
<td>caplacizumab</td>
<td>vWF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammation/Immunology/Infection</td>
<td>ozoralizumab</td>
<td>TNFα</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALX-0061</td>
<td>IL-6R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>IgE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oncology</td>
<td>ALX-0141</td>
<td>RANKL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary</td>
<td>ALX-0171</td>
<td>RSV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammation/Immunology</td>
<td>ALX-0761</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oncology</td>
<td>ALX-0751</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurology</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oncology</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Validated targets (clinic)

1st in class

Blank boxes: non-disclosed targets
ALX-0061 – designed to be potentially best-in-class

<table>
<thead>
<tr>
<th>Features</th>
<th>Potential Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small (26kD)</td>
<td>• penetrates faster and more effectively into tissues</td>
</tr>
<tr>
<td>Targets human serum albumin (HSA)</td>
<td>• prolongs half-life</td>
</tr>
<tr>
<td></td>
<td>• improved trafficking to inflamed tissue</td>
</tr>
<tr>
<td>Monovalent binding</td>
<td>• avoids target cross-linking</td>
</tr>
<tr>
<td>Preferential binding of soluble vs. membrane bound IL-6R</td>
<td>• superior benefit/risk profile</td>
</tr>
<tr>
<td>Strong affinity to soluble IL-6R</td>
<td>• fast target engagement resulting in fast onset of action</td>
</tr>
<tr>
<td>Low immunogenic potential</td>
<td>• improved safety profile</td>
</tr>
<tr>
<td>Tailored PK</td>
<td>• extended therapeutic window</td>
</tr>
<tr>
<td></td>
<td>• convenient dosing and scheduling</td>
</tr>
</tbody>
</table>
ALX-0061 – Phase II study design (MAD)

Dose modification based on EULAR response at week 10

24/28 patients completed the study at their ALX-0061 starting dose
ALX-0061 – ACR scores further improved from week 12 to 24
ALX-0061 – strong induction of DAS28 remission

- All DAS28 components contributed substantially to the score
- 20/24 patients achieved low disease activity or remission
Caplacizumab (anti-vWF) – designed to address an unmet medical need in TTP

<table>
<thead>
<tr>
<th>Unique Nanobody Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
</tr>
<tr>
<td>not an antibody</td>
</tr>
<tr>
<td>no Fc</td>
</tr>
<tr>
<td>rapid distribution and</td>
</tr>
<tr>
<td>onset of action</td>
</tr>
<tr>
<td>rapid clearance</td>
</tr>
<tr>
<td>limits toxicity risk</td>
</tr>
<tr>
<td>Specific</td>
</tr>
<tr>
<td>high potency towards</td>
</tr>
<tr>
<td>target</td>
</tr>
<tr>
<td>avoid “off-target”</td>
</tr>
<tr>
<td>effects</td>
</tr>
<tr>
<td>Robust</td>
</tr>
<tr>
<td>high stability</td>
</tr>
<tr>
<td>good manufacturability</td>
</tr>
<tr>
<td>iv and sc formulation</td>
</tr>
<tr>
<td>liquid, lyophilised</td>
</tr>
<tr>
<td>Modular</td>
</tr>
<tr>
<td>bivalent interaction</td>
</tr>
<tr>
<td>with target</td>
</tr>
<tr>
<td>increased avidity</td>
</tr>
<tr>
<td>leads to higher</td>
</tr>
<tr>
<td>potency</td>
</tr>
</tbody>
</table>

- Orphan Drug designation in US and EU
- Patent term (excluding extensions) will run until 2026
- Potential pivotal Phase II study on-going with the aim to complete recruitment in 2013
Caplacizumab – blocks the platelet and ULvWF interaction

Microthrombi form which block the small blood vessels in thrombotic thrombocytopenic purpura (TTP)

Anti-vWF Nanobody inhibits platelet string formation caused by UL-vWF in plasma of TTP patients

Ex vivo platelet string formation

Target for the Nanobody is in the bloodstream, i.v. and s.c. formulations ensure desired exposure
Acquired TTP – an unmet medical need

Healthy active adult

Sudden onset:
severe fatigue,
headache, bizarre
behaviour, vertigo,
seizures, coma,
various other symptoms

Potentially:
fewer days of PEX
reduction in relapse/exacerbations
improved longer term outcome

+ caplacizumab

Diagnosis of TTP

Daily plasma exchanges in hospital until recovery of platelets count
Respiratory syncytial viral (RSV) infections – unmet need

Duration: 1-2 weeks

*medical cost year after infection
**risk asthma

Evolves to distressing symptoms
Symptomatic treatment including inhaled corticosteroid & bronchodilator
8-20% hospitalised

“RSV infection is the most common cause of lower respiratory tract disease and hospital admission in infants. No effective therapy is available at present. Current prophylaxis with a mAb is expensive and only partially protective. Any new treatment strategy for RSV bronchiolitis is very welcome”

Prof De Boeck, Pediatric Pulmonology

* Shi et al., J Med Econ, 2011; **Sigurs et al., Thorax, 2010; Krishnamoorthy et al., Nature Medicine 2012
ALX-0171 – anti-RSV Nanobody designed for delivery to site of infection

Unique Nanobody Format

2,000 fold increase in potency compared with monovalent structure

<table>
<thead>
<tr>
<th>Specific</th>
<th>Robust</th>
<th>Convenient</th>
</tr>
</thead>
<tbody>
<tr>
<td>high potency towards the virus</td>
<td>high stability</td>
<td>inhalation</td>
</tr>
<tr>
<td>avoid “off-target” effects</td>
<td>efficient nebulisation</td>
<td>opportunity for once or twice daily dosing</td>
</tr>
<tr>
<td>well tolerated in Phase I study</td>
<td>without loss in potency</td>
<td>dosing time < 3 minutes</td>
</tr>
<tr>
<td></td>
<td>potentially reduces viral replication in the lungs</td>
<td></td>
</tr>
</tbody>
</table>

Patent term (including extensions) will run until 2035
ALX-0171 – potential for transformational treatment of RSV

Safe
- Biologic targeting the virus
- Well tolerated in Phase I
- In contrast to some vaccines, not associated with enhanced RSV disease

Potent
- Potentially most potent drug in clinical development
- Broad coverage of viral clinical strains

Fast
- Virus in the respiratory tract targeted immediately through nebulisation

Inhaled
- Opportunity for once daily dosing (< 3 minutes)
- Airway model shows efficient delivery to infant lung

ALN-RSV01: Alnylam (PhII b completed to treat progressive bronchiolitis obliterans syndrome; primary endpoint not met); MDT637: Microdose (PhI completed to treat RSV)
Nanobodies®: journey from research to commercial

UPIP-VAPI
VUB Campus Jette April 2013

Hilde Revets
Senior Research Fellow